CSE 311: Foundations of Computing

Lecture 14: Induction \& Strong Induction

Midterm

- A week today (Friday, Feb 14) in class
- Closed book, closed notes
- You will get lists of inference rules \& equivalences
- Covers material up to end of ordinary induction.
- Practice problems \& practice midterm on the website
- Solutions early next week
- Solutions to HW5 in Section next Thursday
- I will run a review session Thursday, Feb 13, 5:00-6:30 pm in Sieg Hall 134. Please bring your questions!

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq 0$ by induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for some arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq 0$ "

Induction: Changing the start line

- What if we want to prove that $P(n)$ is true for all integers $n \geq b$ for some integer b ?
- Define predicate $\underbrace{Q(k)}=P(k+b)$ for all k.
- Then $\forall n Q(n) \equiv \forall n \geq b P(n)$
- Ordinary induction for Q :
- Prove $Q(0) \equiv P(b)$
- Prove
$\forall k(Q(k) \rightarrow Q(k+1)) \equiv \forall k \geq b(P(k) \rightarrow P(k+1))$

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for some arbitrary integer $k \geq b$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq \underbrace{b}$

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for some arbitrary integer $k \geq b$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$
Proof: Let $P(n)$ be " $3 n \geq n^{2}+3$ ". We prove $P(n)$ for all integers $n \geq 2$ by inductor

$$
\begin{gathered}
3^{2}=9 \geqslant 7=2^{2}+3 \\
\therefore P(2) \triangle \text { the }
\end{gathered}
$$

Bachunck ream al

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.
2. Base Case ($n=2$):

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$.
4. Inductive Step:

Goal: Show $P(k+1)$, ie. show $\left.3^{k+1} \geq(k+1)^{2}+3=h^{2}+2 h+y\right)$
$3^{k} \geqslant h^{2}+3$ by IH $\quad(p(k))$
$\begin{aligned} 3^{k+1}=3.3^{h} & \geqslant 3 k^{2}+9 \\ & =k^{2}+2 k^{2}+9\end{aligned} t^{-t}$
$\geqslant h^{2}+2 k+4$
$\geqslant h^{2}+2 h+4$ sure $k \geqslant 2 \geqslant 1$
$\therefore P(h+1) \frac{h^{2}+2 h+4}{1(\text { fare }}$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$.
4. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show } 3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4
$$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

$$
\begin{aligned}
3^{k+1} & =3\left(3^{k}\right) \\
& \geq 3\left(k^{2}+3\right) \text { by the IH } \\
& =k^{2}+2 k^{2}+9 \\
& \geq k^{2}+2 k+4=(k+1)^{2}+3 \text { since } k \geq 1 .
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all integers $n \geq 2$, by induction.

Recall: Induction Rule of Inference

Domain: Natural Numbers

How do the givens prove $P(5)$?

Recall: Induction Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall P P(n)
\end{gathered}
$$

How do the givens prove $P(5)$?

We made it harder than we needed to ...
When we proved $P(2)$ we knew BOTH $P(0)$ and $P(1)$
When we proved $P(3)$ we knew $P(0)$ and $P(1)$ and $P(2)$
When we proved $P(4)$ we knew $P(0), P(1), P(2), P(3)$
etc.
That's the essence of the idea of Strong Induction.

Strong Induction

$$
\begin{aligned}
& P(0) \\
& \forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

$$
\begin{aligned}
Q(h) & =P(0) \wedge P(1) \wedge \cdots \cap P(h) \\
& \equiv \exists j((0 \leq j \leq h) \rightarrow P(j))
\end{aligned}
$$

Strong Induction

$P(0)$
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall n P(n)$

Strong induction for P follows from ordinary induction for Q where

$$
Q(k)=P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)
$$

Note that $\underline{Q(0)} \equiv P(0)$ and $Q(k+1) \equiv Q(k) \wedge P(k+1)$ and $\forall n Q(n) \equiv \forall n P(n)$

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,

$$
P(k) \text { is true" }
$$

$$
p(b) \ldots p(h)
$$

4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Strong Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,
$P(j)$ is true for every integer j from b to k "

4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

We use strong induction to prove that a factorization into primes exists, but not that it is unique.

Every integer ≥ 2 is a product of primes.
Plows: 1. Let $P(u)$ be "Ri is upraduct of prone!"
we prove $P(n)$ for all $n \geqslant 2$ by string ind custos
2. Bare care: $(n=2) 2$ is pis so it 0 a product of pres $P(2)$
3. Induture Hypothrii: Assam that for sone integer $h \geqslant 2$ all integers between 2 ail k are products of pines.

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case $(n=2)$: 2 is prime, so it is a product of primes.

Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$,
$\mathrm{P}(\mathrm{j})$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; ie. $k+1$ is a product of primes
Cone $h+1$ is pine \therefore it is a puduct of
pusher

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case $(n=2)$: 2 is prime, so it is a product of primes.

Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$; ie. $\mathrm{k}+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes care: $k+1$ is compote: $h+1=a . b$ for integers a, b od $12 a<n+1, k b<n+1$ $\therefore 2 \leq a \leq h, 2 \leq 6 \leq h$ a, b ave poducts is pour by 士H.

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case $(n=2)$: 2 is prime, so it is a product of primes.

Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$.

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case $(n=2)$: 2 is prime, so it is a product of primes.

Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$; i.e. $\mathrm{k}+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s} \\
& \quad \text { for some primes } p_{1}, p_{2}, \cdots, p_{r}, q_{1}, q_{2}, \cdots, q_{s}
\end{aligned}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes.

Every integer ≥ 2 is a product of primes.

1. Let $P(n)$ be " n is a product of primes". We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case $(n=2)$: 2 is prime, so it is a product of primes.

Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$; i.e. $\mathrm{k}+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes
Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s} \\
& \quad \text { for some primes } p_{1}, p_{2}, \cdots, p_{r}, q_{1}, q_{2}, \cdots, q_{s} .
\end{aligned}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes. Since $k \geq 2$, one of these cases must happen and so $P(k+1)$ is true:
5. Thus $P(n)$ is true for all integers $n \geq 2$, by strong induction.

Strong Induction is particularly useful when...

...we need to analyze methods that on input k make a recursive call for an input different from $k-1$.
e.g.: Binary Search:

- For a problem of size $k>1$ it makes a recursive call to a problem of size roughly $k / 2$

We won't analyze this particular method by strong induction, but we could.
However, we will use strong induction to analyze other functions with recursive definitions.

Recursive definitions of functions

- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0 .<-$ $F(n)=n$
- $G(0)=1 ; G(n+1)=2 \cdot G_{n}(n)$ for all $n \geq 0$.

$$
G(n)=-2
$$

- $0!=1 ;(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.

$$
\left.f(x)=2^{2^{2^{2}}}\right) n
$$

Prove $n!\leq n^{n}$ for all $n \geq 1$

Prove $n!\leq n^{n}$ for all $n \geq 1$

1. Let $P(n)$ be " $n!\leq n$ ". We will show that $P(n)$ is true for all integers $n \geqq 1$ by induction.
2. Base Case $(n=1):(1!) 1 \cdot 0!=1 \cdot 1=1=1{ }^{1}$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(k+1)!\leq(k+1)^{k+1}$

$$
\begin{aligned}
(k+1)! & =(k+1) \cdot k! & & \text { by definition of ! } \\
& =(k+1) \cdot k^{k} & & \begin{array}{l}
\text { by the IH and } k+1 \geq 0
\end{array} \\
& \leq(k+1) \cdot(k+1)^{k} & \text { since } k \geq 0 & \\
& =(k+1)^{k+1} & & k \quad k+1
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all $n \geq 1$, by induction.

More Recursive Definitions

Suppose that $h: \mathbb{N} \rightarrow \mathbb{R}$.

$$
\begin{aligned}
& S_{i=1}^{n} h(i) \\
& S_{i=1}^{0} h(i)=0
\end{aligned}
$$

Then we have familiar summation notation:
$\sum_{i=0}^{0} h(i)=h(0)$
$\sum_{i=0}^{n+1} h(i)=h(n+1)+\sum_{i=0}^{n} h(i)$ for $n \geq 0$

There is also product notation:

$$
\prod_{i=1}^{0} h(i)=1
$$

$$
\prod_{i=0}^{0} h(i)=h(0)
$$

$$
\prod_{i=0}^{n+1} h(i)=h(n+1) \cdot \prod_{i=0}^{n} h(i) \text { for } n \geq 0
$$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

