CSE 311: Foundations of Computing

Lecture 14: Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for(int i=0; i < n; n++) \{ ... \}
- Show $\mathrm{P}(\mathrm{i})$ holds after i times through the loop

```
public int f(int x) {
    if (x == 0) { return 0; }
    else { return f(x - 1) + 1; }
```

\}

- $f(x)=x$ for all values of $x \geq 0$ naturally shown by induction.

Prove $\forall a, b, m>0 \forall k \in \mathbb{N}\left(a \equiv b(\bmod m) \rightarrow a^{k} \equiv b^{k}(\bmod m)\right)$

Let $a, b, m>0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b(\bmod m)$.

We know $(a \equiv b(\bmod m) \wedge a \equiv b(\bmod m)) \rightarrow a^{2} \equiv b^{2}(\bmod m)$ by multiplying congruences. So, applying this repeatedly, we have:

$$
\begin{gathered}
(a \equiv b(\bmod m) \wedge a \equiv b(\bmod m)) \rightarrow a^{2} \equiv b^{2}(\bmod m) \\
\left(a^{2} \equiv b^{2}(\bmod m) \wedge a \equiv b(\bmod m)\right) \rightarrow a^{3} \equiv b^{3}(\bmod m) \\
\cdots \\
\left(a^{k-1} \equiv b^{k-1}(\bmod m) \wedge a \equiv b(\bmod m)\right) \rightarrow a^{k} \equiv b^{k}(\bmod m)
\end{gathered}
$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \frac{\forall k(P(k) \rightarrow P(k+1))}{\therefore \forall n P(n)}
\end{aligned}
$$

How do the givens prove $P(5)$?

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \frac{\forall k(P(k) \rightarrow P(k+1))}{\therefore \forall n P(n)}
\end{aligned}
$$

How do the givens prove $P(5)$?

First, we have $P(0)$.
Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true. Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(1) \rightarrow P(2)$.

Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

1. Prove P(0)
2. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
3. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0
3. $P(k) \rightarrow P(k+1)$
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro $\forall: 2,3$
5. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0
3.1. Assume that $P(k)$ is true
3.2. ...
3.3. Prove $P(k+1)$ is true
3. $P(k) \rightarrow P(k+1)$
4. $\forall k(P(k) \rightarrow P(k+1))$
5. $\forall \mathrm{nP}(\mathrm{n})$

Direct Proof Rule Intro $\forall: 2,3$
Induction: 1, 4

Translating to an English Proof

$$
\stackrel{P(0)}{\forall k(P(k) \xrightarrow{\longrightarrow} P(k+1))}
$$

$\therefore \forall n P(n)$

Translating To An English Proof

Conclusion

Induction Proof Template

[...Define P(n)...]
We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.
Base Case: [...proof of $P(0)$ here...]
Induction Hypothesis:
Suppose that $P(k)$ is true for some $k \in \mathbb{N}$.
Induction Step:
We want to prove that $P(k+1)$ is true.
[...proof of $P(k+1)$ here...]
The proof of $P(k+1)$ must invoke the IH somewhere.
So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Proof:

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for some arbitrary integer $k \geq 0 "$
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: Result follows by induction"

What is $1+2+4+\ldots+2^{n}$?

- 1
- $1+2$
- $1+2+4$
- $1+2+4+8$
- $1+2+4+8+16=31$

It sure looks like this sum is $2^{n+1}-1$
How can we prove it?
We could prove it for $n=1, n=2, n=3, \ldots$ but that would literally take forever.
Good that we have induction!

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $\quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

$$
1+2+\ldots+2^{k}=2^{k+1}-1 \text { by IH }
$$

Adding 2^{k+1} to both sides, we get:

$$
1+2+\ldots+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $P(k+1)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

$$
\begin{aligned}
1+2+\ldots+2^{k}+2^{k+1} & =\left(1+2+\ldots+2^{k}\right)+2^{k+1} \\
& =2^{k+1}-1+2^{k+1} \text { by the IH }
\end{aligned}
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $P(k+1)$.

Alternative way of writing the inductive step

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

$$
\begin{aligned}
1+2+\ldots+2^{k}+2^{k+1} & =\left(1+2+\ldots+2^{k}\right)+2^{k+1} \\
& =2^{k+1}-1+2^{k+1} \text { by the IH }
\end{aligned}
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $P(k+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(1+2+\ldots+k)+(k+1) \\
& =k(k+1) / 2+(k+1) \text { by IH }
\end{aligned}
$$

Now $k(k+1) / 2+(k+1)=(k+1)(k / 2+1)=(k+1)(k+2) / 2$.
So, we have $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$, which is exactly $P(k+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Another example of a pattern

- $2^{0}-1=1-1=0=3 \cdot 0$
- $2^{2}-1=4-1=3=3 \cdot 1$
- $2^{4}-1=16-1=15=3 \cdot 5$
- $2^{6}-1=64-1=63=3 \cdot 21$
- $2^{8}-1=256-1=255=3 \cdot 85$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$):

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step: Goal: Show $P(k+1)$, i.e. show $3 \mid\left(2^{2(k+1)}-1\right)$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$, i.e. show $3 \mid\left(2^{2(k+1)}-1\right)$
By IH, $3 \mid\left(2^{2 k}-1\right)$ so $2^{2 k}-1=3 \mathrm{j}$ for some integer j
So $2^{2(k+1)}-1=2^{2 k+2}-1=4\left(2^{2 k}\right)-1=4(3 j+1)-1$

$$
=12 j+3=3(4 j+1)
$$

Therefore $3 \mid\left(2^{2(k+1)}-1\right)$ which is exactly $P(k+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Checkerboard Tiling

- Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \square

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $n=1$ \square
\square
\square
\square

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $\mathrm{n}=1$ \square

3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$
4. Inductive Step: Prove $P(k+1)$

Apply IH to each quadrant then fill with extra tile.

