CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic, Applications and Factoring

Last Class: Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

Check Your Understanding. Which of the following are true?

5|1
5| 1 iff $1=5 k$

1 | 5 iff $5=1 k$

25 | 5 iff $5=25 k$
$5 \mid 25$ iff $25=5 k$
$5 \mid 25$

$5 \mid 0$ iff $0=5 k$
$0 \mid 5$
$0 \mid 5$ iff $5=0 k$
| 2
3|2iff $2=3 k$
2|3
2| 3 iff $3=2 k$

Last Class: Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $\mathbf{a} \%$ d.

Last Class: Arithmetic, mod 7

$$
\begin{aligned}
& a+{ }_{7} b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Last Class: Modular Arithmetic

Definition: "a is congruent to b modulo m "
For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?

$$
x \equiv 0(\bmod 2)
$$

This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 \mathrm{k}$ for k an integer.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\boldsymbol{\operatorname { m o d }} \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \bmod m=(b+k m) \bmod m=b \bmod m
$$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv \boldsymbol{b}(\boldsymbol{\operatorname { m o d }} \boldsymbol{m})$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv b(\bmod m)$.

Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s
$$

Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$

$$
=m(q-s)+(a \bmod m-b \bmod m)
$$

$$
=m(q-s) \text { since } a \bmod m=b \bmod m
$$

Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

Last Class: $\bmod m$ function vs $\equiv(\bmod m)$ predicate

- What we have just shown
- The mod m function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \bmod m \in\{0,1, . ., m-1\}$.
- Imagine grouping together all integers that have the same value of the $\bmod m$ function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The $\equiv(\bmod m)$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.
That is, a and b are in the same group.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and
$\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+c \equiv b+\boldsymbol{d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $a+\boldsymbol{c} \equiv b+\boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Adding the equations together gives us $(a+c)-(b+d)=m(k+j)$. Now, re-applying the definition of congruence gives us $a+c \equiv b+d(\bmod m)$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Then, $a=k m+b$ and $c=j m+d$. Multiplying both together gives us $a c=(k m+b)(j m+d)=k j m^{2}+k m d+b j m+b d$.

Re-arranging gives us $a c-b d=m(k j m+k d+b j)$. Using the definition of congruence gives us $a c \equiv b d(\bmod m)$.

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like
Case 2 (n is odd):

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.

Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:
Suppose $n \equiv 0(\bmod 2)$.

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Then, $n=2 k$ for some integer k.
So, $n^{2}=(2 k) 2=4 k^{2}$. So, by
definition of congruence,
$n^{2} \equiv 0(\bmod 4)$.
It looks like
Case 2 (n is odd):
Suppose $n \equiv 1(\bmod 2)$.

$$
n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and }
$$

$$
n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4)
$$

Then, $n=2 k+1$ for some integer k.
So, $n^{2}=(2 k+1) 2=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$.
So, by definition of congruence, $n^{2} \equiv 1(\bmod 4)$.

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2:

If $\sum_{i=0}^{n-1} b_{i} 2^{i}$ where each $b_{i} \in\{0,1\}$
then representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value
$99=64+32+2+1$
$18=16+2$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit
Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $0 \leq x \leq 2^{n-1}$
$-x$ is represented by the binary representation of $2^{n}-x$
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $\boldsymbol{y} \boldsymbol{\operatorname { m o d }}^{\boldsymbol{2}}$ so arithmetic works $\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110

Sign-Magnitude vs. Two's Complement

-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1111	1110	1101	1100	1011	1010	1001	0000	0001	0010	0011	0100	0101	0110	0111

Sign-bit

| -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |

Two's complement

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$
- That is, the two's complement representation of any number y has the same value as y modulo 2^{n}.
- To compute this: Flip the bits of x then add 1:
- All 1's string is $2^{n}-1$, so

Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$
Then add 1 to get $2^{n}-x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

These applications work well because of how we can solve equations involving mods

- To understand that we need a bit more number theory...

Hashing

Scenario:
Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- $\operatorname{hash}(x)=(a x+b) \bmod p$ for a prime p close to n and values a and b

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

Simple Ciphers

- Caesar cipher, $A=1, B=2, \ldots$
- HELLO WORLD
- Shift cipher
$-f(p)=(p+k) \bmod 26$
$-f^{-1}(p)=(p-k) \bmod 26$
- More general
$-f(p)=(a p+b) \bmod 26$

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Case 1: Q is prime: Then Q is a prime different from all of $p_{1}, p_{2}, \ldots, p_{n}$ since it is bigger than all of them.

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Case 1: Q is prime: Then Q is a prime different from all of $p_{1}, p_{2}, \ldots, p_{n}$ since it is bigger than all of them.
Case 2: $Q>1$ is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p \mid P$ and $p \mid Q$ so $p \mid(Q-P)$ which means that $p \mid 1$.
Both cases are contradictions so the assumption is false.

Famous Algorithmic Problems

- Primality Testing
- Given an integer n, determine if n is prime
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Greatest Common Divisor

GCD (a, b):
Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- $\operatorname{GCD}(180,252)=$

GCD and Factoring

$$
\begin{aligned}
& a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200 \\
& b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750
\end{aligned}
$$

$\mathrm{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11^{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is expensive!
Can we compute $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$ without factoring?

Useful GCD Fact

If a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

Useful GCD Fact

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:
By definition of mod, $a=q b+(a \bmod b)$ for some integer $q=a \operatorname{div} b$.
Let $d=\operatorname{gcd}(a, b)$. Then $d \mid a$ and $d \mid b$ so $a=k d$ and $b=j d$ for some integers k and j.

Therefore $(a \bmod b)=a-q b=k d-q j d=(k-q j) d$.
So, $d \mid(a \bmod b)$ and since $d \mid b$ we must have $d \leq \operatorname{gcd}(b, a \bmod b)$.
Now, let $e=\operatorname{gcd}(b, a \bmod b)$. Then $e \mid b$ and $e \mid(a \bmod b)$ so

$$
b=m e \text { and }(a \bmod b)=n e \text { for some integers } m \text { and } n
$$

Therefore $a=q b+(a \bmod b)=q m e+n e=(q m+n) e$.
So, $e \mid a$ and since $e \mid b$ we must have $e \leq \operatorname{gcd}(a, b)$.
It follows that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Another simple GCD fact

If a is a positive integer, $\operatorname{gcd}(a, 0)=a$.

