CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory

Last class: Inference Rules for Quantifiers

* in the domain of P. No other name in P depends on a
$\operatorname{Elim} \quad \exists \mathrm{x} P(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c

```
** c is a NEW name.
```

List all dependencies for c.

Last class: Even and Odd

```
Even(x)\equiv\existsy (x=2y)
Odd(x) \equiv\existsy (x=2y+1)

Prove: "The square of every even number is even." Formal proof of: \(\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)\)
1. Let a be an arbitrary integer
2.1 Even(a) Assumption
\(2.2 \exists y(a=2 y) \quad\) Definition of Even
\(2.3 \mathbf{a}=2 \mathbf{b} \quad\) Elim \(\exists\) : \(\mathbf{b}\) special depends on \(\mathbf{a}\)
\(2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad\) Algebra
\(2.5 \exists y\left(a^{2}=2 y\right) \quad\) Intro \(\exists\) rule
2.6 Even \(\left(\mathrm{a}^{2}\right) \quad\) Definition of Even
2. Even \((\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right) \quad\) Direct proof rule
3. \(\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad\) Intro \(\forall: 1,2\)
```

Even(x)\equiv\existsy (x=2y)
Odd(x) \equiv\existsy (x=2y+1)
Last Class: Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.

Then, by definition, $a=2 b$ for some integer b (depending on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

Since $2 b^{2}$ is an integer, by definition, a^{2} is even.

Since a was arbitrary, it follows that the square of every even number is even.

1. Let a be an arbitrary integer 2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
$2.3 \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}$ special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathrm{a}^{2}\right)$ Definition
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory in CS is done this way)
- English proof is correct if the reader believes they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Even and Odd \begin{tabular}{l|l|}

\hline | Predicate Definitions |
| :--- |

Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$
:---:
Integers

\hline
\end{tabular}

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd \begin{tabular}{l|l|}
\hline Predicate Definitions

Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$
:---:
Integers

\hline
\end{tabular}

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

$$
\text { 5. } \forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))
$$

Even and Odd \begin{tabular}{l|l|}
\hline Predicate Definitions

Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$
:---:
Integers

\hline
\end{tabular}

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

$$
\text { 5. } \forall \mathbf{u} \forall \mathbf{v}((\operatorname{Odd}(\mathbf{u}) \wedge \operatorname{Odd}(\mathbf{v})) \rightarrow \operatorname{Even}(\mathbf{u}+\mathbf{v}))
$$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow$ Even $(x+y))$

Let x and y be arbitrary integers.
suppose that x ave odd

Since x and y were arbitrary, the sum of any odd integers is even. two

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer 3.1 Odd (x) Hod y) As en,
2.? Even $(x+y)$
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})$
4. $\forall v((O d d(x) \wedge O d d(v)) \rightarrow E v e n(x+v))$ Intro \forall
5. $\forall \mathbf{u} \forall \mathrm{v}((\mathrm{Odd}(\mathbf{u}) \wedge \operatorname{Odd}(\mathrm{v})) \rightarrow$ Even (u+v)) Intro \forall

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.
Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y}) \quad$ Assumption
3.9 Even $(\mathbf{x}+\mathrm{y})$
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathbf{x}+\mathbf{y})$ Direct Proof
4. $\forall v((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{v})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{v}))$ Intro \forall
5. $\forall \mathbf{u} \forall v((O d d(\mathbf{u}) \wedge \operatorname{Odd}(\mathbf{v})) \rightarrow$ Even(u+v)) Intro \forall

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
$\therefore x=2 a+1$ for lon integer

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y}) \quad$ Assumption
3.2 $\operatorname{Odd}(\mathbf{x}) \quad \operatorname{Elim} \wedge: 2.1$
3.3 $\operatorname{Odd}(\mathbf{y})$

-

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(x+y) \longrightarrow$ dey
4. $\forall v((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{v})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{v}))$ Intro \forall
5. $\forall \mathbf{u} \forall \mathbf{v}((\operatorname{Odd}(\mathbf{u}) \wedge \operatorname{Odd}(\mathbf{v})) \rightarrow \operatorname{Even}(\mathbf{u}+\mathbf{v}))$ Intro \forall

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x).
$\therefore x+y=2 a+(+2 x+1=2(u+b+1)$
so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x).
Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
3.3	$\operatorname{Odd}(\mathbf{y})$	Elim $\wedge: 2.1$
3.4	$\exists z(x=2 z+1)$	Def of Odd: 2.2
3.5	$x=2 a+1$	Elim J : 2.4 (adep x)
3.6	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
3.7	$y=2 b+1$	Elim y : 2.5 (b dep y)
3.8	$x+y=2(a+b+1)$	Algebra
	$\exists z(x+y=2 z)$	Intro \#: 2.4
3.10	Even($\mathrm{x}+\mathrm{y}$)	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})$
4. $\forall v((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{v})) \rightarrow$ Even $(\mathrm{x}+\mathrm{v}))$ Intro \forall
5. $\forall \mathbf{u} \forall \mathrm{v}((\operatorname{Odd}(\mathbf{u}) \wedge \operatorname{Odd}(\mathbf{v})) \rightarrow \operatorname{Even}(\mathbf{u}+\mathbf{v}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on $x)$. Their sum is $x+y=(2 a+1)+(2 b+1)=$ $2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even. Since x and y were arbitrary, the sum of any two odd integers is even.

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary odd integers.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

$$
\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow \operatorname{Even}(x+y))
$$

Proof Strategies: Counterexamples

To disprove $\forall x \mathrm{P}(\mathrm{x})$ prove $\exists \ngtr \mathrm{P}(\mathrm{x})$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x for which $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} \boldsymbol{P}(x)$.
e.g. Disprove "Every prime number is odd"

$$
\begin{aligned}
& \forall x(\text { Prime }(x) \rightarrow \partial d d(x)) \\
& =7 x\left(\begin{array}{l}
\text { Pine }(x) \wedge \neg 0 d d(x)) \\
\text { Pine }(2) \wedge 7 O d d(z)
\end{array}\right.
\end{aligned}
$$

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg \mathrm{p}$, then we have proven $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$, which is equivalent to provins $\mathrm{p} \rightarrow \mathrm{q}$.
1.1. $\neg q \quad$ Assumption
1.3. $\neg p$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $p \rightarrow q$

Contrapositive: 1

Proof by Contradiction: One way to prove \neg p

If we assume p and derive F (a contradiction), then we have proven \neg p.

Prove: "No integer is both even and odd."

$$
\begin{aligned}
& \equiv \forall x \neg(\text { Even }(x) \wedge \operatorname{Odd}(x))
\end{aligned}
$$

Proof by contradictur:
by Contradichni
Suppose Rat integer x and bot even
$x=2 a$ and $x=2 b+1$ for integer
$\therefore x=2 a$ and $x=2 b+1$ for integer
a and b depaily on x.
$\therefore \quad 2 a=2 b+1 \quad \therefore a=b+1 / 2$
This a contraction che no two inter differ by $1 / 2$
$\therefore \quad$ inter differ by $1 / 2$ integer is bot z odd arlene

Even and Odd

Predicate Definitions
$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."

$$
\text { English proof: } \begin{aligned}
& \neg \exists x(E v e n(x) \wedge \operatorname{Odd}(\mathrm{x})) \\
& \equiv \forall x \neg(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x}))
\end{aligned}
$$

Proof: We work by contradiction. Let x be an arbitrary integer and suppose that it is both even and odd.
Then $x=2 a$ for some integer a and $x=2 b+1$ for some integer b. Therefore $2 a=2 b+1$ and hence $a=b+1 / 2$.
But two integers cannot differ by $1 / 2$ so this is a contradiction. So, no integer is both even and odd. ■

Rationality

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x):=\exists p \exists q(((\operatorname{lnteger}(p) \wedge \operatorname{Integer}(q)) \wedge(x=p / q)) \wedge q \neq 0)$

Rationality

Predicate Definitions
Rational $(x):=\exists p \exists q(\operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(x=p / q) \wedge(q \neq 0))$
Prove: "The product of two rational numbers is
rational."

Formally, prove $\forall x \forall y$ ((Rational($x) \wedge$ Rational(y)) \rightarrow Rational($x y)$)

Rationality

Predicate Definitions
Rational $(x):=\exists p \exists q(\operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(x=p / q) \wedge(q \neq 0))$

Prove: "The product of two rational numbers is rational."

$$
\therefore x y \text { is rates }
$$

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

$$
\begin{aligned}
& \text { Proof: Let } \mathrm{x} \text { and } \mathrm{y} \text { be arbitrary rational numbers. } \\
& \therefore x=a / b \text { for inteepes } 0, b, b \neq 0 \text { (doppeat a } x \text {) } \\
& y=c / d \text { tu inhey } c, d, d \neq 0(\quad-a y) \\
& \therefore x y=(a / b)(c / d)=\frac{a c}{b d} \\
& \text { ac, } \begin{array}{c}
b d \neq 0 \\
\text { intens }
\end{array}
\end{aligned}
$$

Rationality

Predicate Definitions
Rational $(x):=\exists p \exists q(\operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(x=p / q) \wedge(q \neq 0))$

Prove: "The product of two rational numbers is rational."

Proof: Let x and y be arbitrary rational numbers.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get $x y=(a / b)(c / d)=(a c) /(b d)$.
Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. So, by definition, $x y$ is rational. Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets
\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
zahlen \mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
quotient \mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$
[\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number $\}=\varnothing$ is the empty set; the only set with no elements

$$
\text { [n] }\{1,2, \ldots, n\}
$$

Sets can be elements of other sets

```
For example
A = {{1},{2},{1,2},\varnothing}
B={1,2}
Then \(B \in A\).
```


Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\begin{aligned}
& A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B) \\
& \quad A \subset B \text { were } A \subseteq B \text { but } A \notin B
\end{aligned}
$$

- Note: $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

$$
C=D=E
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
\begin{aligned}
S & =\{x \in A: P(x)\} \\
& =\{x: P(x) \wedge x \in \mathcal{A}\}
\end{aligned}
$$

*in the domain of P, usually called the "universe" U

Set Operations

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\} \text { Union }
$$

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\} \text { Intersection }
$$

$$
A \backslash B=\{x:(x \in A) \wedge(x \notin B)\} \text { Set Difference }
$$

$$
\bar{A}=\{x: x \not x A\}
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\text { QUESTIONS }} \\
& \text { Using } A, B, C \text { and set operations, make... } \\
& {[6]=A \cup B \cup C} \\
& \{3\}=A \cap B=A \cap C \\
& \{1,2\}=A \backslash B=A \backslash C
\end{aligned}
$$

More Set Operations

$$
A \oplus B=\{x:(x \in A) \oplus(x \in B)\} \quad \begin{gathered}
\text { Symmetric } \\
\text { Difference }
\end{gathered}
$$

$\bar{A}=\{x: x \notin A\}$
(with respect to universe U)
Complement
$\left\{\begin{array}{l}A=\{1,2,3\} \\ B=\{1,2,4,6\} \\ \text { Universe: } \\ U=\{1,2,3,4,5,6\}\end{array}\right.$

$$
\rightarrow \begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

It's Boolean algebra again

- Definition for U based on V

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\}
$$

- Definition for \cap based on \wedge

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\}
$$

- Complement works like \neg

$$
\bar{A}=\{x: \neg(x \in A)\}
$$

De Morgan's Laws

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$
Remember the definition of subset?

$$
X \subseteq Y \equiv \forall x(x \in X \rightarrow x \in Y)
$$

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$
Remember the definition of subset?

$$
X \subseteq Y \equiv \forall x(x \in X \rightarrow x \in Y)
$$

Proof: Let A and B be arbitrary sets and x be an arbitrary element of $A \cap B$.
Then, by definition of $A \cap B, x \in A$ and $x \in B$. It follows that $x \in A$, as required. \square

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=$?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B$? $A \cap B$?

UNIX/Linux File Permissions

- ls -l

$$
\begin{aligned}
& \text { drwxr-xr-x } \\
& \text {-. . . Documents / } \\
& \text {-r--r-- ... file1 }
\end{aligned}
$$

- Permissions maintained as bit vectors
- Letter means bit is 1
- "-" means bit is 0 .

Bitwise Operations

01101101
$\checkmark 00110111$
01111111
00101010 Java: $\mathbf{z = x \& y}$

- 00001111

00001010
$01101101 \quad$ Java: $\quad \mathbf{z}=\mathbf{x}^{\wedge} \mathbf{y}$
$\oplus 00110111$
01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that’s a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

