CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ A, B

Intro ∧ $A; B$
∴ A ∧ B

Elim ∨ $A \lor B; \neg A$
∴ B

Intro ∨ $A \lor B, B \lor A$

Modus Ponens $A; A \to B$
∴ B

Direct Proof $A \Rightarrow B$
Rule

∴ $A \to B$

Not like other rules

Last class: Example

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1
1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2
1.4. $p \rightarrow r$ Direct Proof Rule
1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Last class: One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Last Class: Some Inference Rules for Quantifiers

P(c) for some c
$$\exists x P(x)$$
 $\exists x P(x)$
 $\exists x P(x)$
 $\exists x P(x)$

Last Class: Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

Last Class: Predicate Logic Proof

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

 $\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \ \text{for any } a
\end{array}$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

- **1.1.** $\forall x P(x)$ Assumption
- 1.2 P(a) Elim \forall : 1.1
- **1.3.** $\exists x P(x)$ Intro $\exists : 1.2$
- 1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x P(x) \\
\therefore P(a) \text{ for any } a
\end{array}$$

Let a be arbitrary*"...P(a)
∴ ∀x P(x)

* in the domain of P

 $\exists x P(x)$

∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers,
 define:

 Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

1.
$$2 = 2 \cdot 1$$
 Arithmetic

2.
$$\exists y (2 = 2 \cdot y)$$
 Intro $\exists : 1$

4.
$$\exists x \; Even(x)$$
 Intro $\exists : 3$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \ne a \cdot b$ for
all integers a, b with $1 < a < x$ "

Prove "There is an even prime number"

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \ne a \cdot b$ for
all integers a, b with $1 < a < x$ "

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

- 1. 2 = 2.1
- **2.** Prime(**2**)*

Arithmetic

Property of integers

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \ne a \cdot b$ for
all integers a, b with $1 < a < x$ "

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

- 1. $2 = 2 \cdot 1$ Arithmetic
- 2. Prime(2)* Property of integers
- 3. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$
- 4. Even(2) Defn of Even: 3
- 5. Even(2) \land Prime(2) Intro \land : 2, 4
- 6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x P(x) \\
\therefore P(a) \text{ for any } a
\end{array}$$

Let a be arbitrary*"...P(a)
∴ ∀x P(x)

* in the domain of P

 $\exists x P(x)$

∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

3. $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Direct proof rule

Intro ∀: 1,2

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$

Definition of Even

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

Definition of Even

Need
$$a^2 = 2c$$
 for some c

2. Even(a) \rightarrow Even(a²)

3.
$$\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$$

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Need $a^2 = 2c$

for some c

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.5
$$\exists y (a^2 = 2y)$$
 Intro $\exists rule: ?$

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c=2b^2$

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1	Even(a)	Assumption
2.2	$\exists y (a = 2y)$	Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$∃y (a^2 = 2y)$$
 Intro $∃$ rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Let a be arbitrary*"...P(a)

∴
$$\forall x P(x)$$

* in the domain of P

Elim∃ $\exists x P(x)$

∴ $P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Let a be arbitrary*"...P(a)

∴
$$\forall x P(x)$$

* in the domain of P

Elim∃ $\exists x P(x)$

∴ $P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \ \text{for any } a
\end{array}$$

Intro \forall "Let a be arbitrary*"...P(a)
∴ $\forall x P(x)$

* in the domain of P. No other name in P depends on a

 $\exists x P(x)$

∴ P(c) for some special** c

** c is a NEW name. List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.

An English Proof

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

$$Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$$

Prove "There is an even integer"

Proof:

$$2 = 2 \cdot 1$$

1. 2 = 2.1

Arithmetic

2. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$

Therefore 2 is even.

3. Even(2)

Defn of Even: 2

Therefore, there is an even integer

 \bullet 4. $\exists x \, Even(x)$

Intro ∃: 3

English Even and Odd

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The square of every even integer is even."

even integer.

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer

2.1 Even(a) Assumption

Then, by definition, a = 2bfor some integer b (depending on a).

2.2 ∃y (a = 2y) Definition

2.3 a = 2b**b** special depends on **a**

Squaring both sides, we get $2.4 \text{ a}^2 = 4b^2 = 2(2b^2)$ Algebra $a^2 = 4b^2 = 2(2b^2)$.

Since 2b² is an integer, by definition, a² is even.

2.5 $\exists y (a^2 = 2y)$

2.6 Even(a²) Definition

Since a was arbitrary, it follows that the square of every even number is even. 2. Even(a) \rightarrow Even(a²)

3. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The square of every odd number is odd."

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse
Integers

Prove "The square of every odd number is odd."

Proof: Let b be an arbitrary odd number.

Then, b = 2c+1 for some integer c (depending on b).

Therefore, $b^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1$.

Since $2c^2+2c$ is an integer, b^2 is odd. The statement follows since b was arbitrary.

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle