CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

MY MATH TEACHER WAS A BIG BELLEVER IN PRCOF BY INTIMIDATION.

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Last class: Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

$$
\begin{array}{lll}
\text { 1.1. } & (p \rightarrow q) \wedge(q \rightarrow r) & \text { Assumption } \\
\text { 1.2. } & p \rightarrow q & \wedge \text { Elim: } 1.1 \\
\text { 1.3. } & q \rightarrow r & \wedge \text { Elim: } 1.1
\end{array}
$$

$$
\left\{\begin{array}{lll}
1.4 .1 . & p & \text { Assumption } \\
1.4 .2 . & q & \text { MP: 1.2, 1.4.1 } \\
1.4 .3 . & r & \text { MP: 1.3, 1.4.2 }
\end{array}\right.
$$

Direct Proof Rule

1. $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r) \quad$ Direct Proof Rule

Last class: One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Last Class: Some Inference Rules for Quantifiers

$\operatorname{lntrog} \rightarrow \frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{C}}{\therefore \quad \exists \mathrm{xP}(\mathrm{x})}$

Last Class: Predicate Logic Proofs

- Can use
- Predicate logic inference rules
whole formulas only
- Predicate logic equivalences (De Morgan's)
even on subformulas
- Propositional logic inference rules
whole formulas only
- Propositional logic equivalences
even on subformulas

 Prove $\forall x P(x) \rightarrow \exists x P(x)$
1.1. $\forall x P(x)$
1.2 $P(a)$
1.3. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

Inference Rules for Quantifiers: First look

* in the domain of P
$\frac{\operatorname{Elim} \exists \mathrm{P}(\mathrm{P})}{\therefore \mathrm{P}(\mathrm{c}) \text { for some special** } \mathrm{c}}$
** By special, we mean that c is a name for a value where $P(c)$ is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:
Domain of Discourse

Integers

- Given the basic properties of arithmetic on integers, define:

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\hline
\end{array}
$$

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Prove"There is an even number"
Formally: prove $\exists x$ Even(x)

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
Even $(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even(x)
1.
$2=2 \cdot 1$
Arithmetic
2. $\exists y(2=2 \cdot y) \quad$ Intro \exists : 1
3. Even(2) Definition of Even: 2
4. $\exists x \operatorname{Even}(x) \quad$ Intro \exists : 3

A Prime Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$ $\operatorname{Prime}(x) \equiv " x>1$ and $x \neq a \cdot b$ for all integers a, b with $1<a<x "$

Prove "There is an even prime number"

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \begin{array}{l}
\text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x) \equiv \text { " } x>1 \text { and } x \neq a \cdot b \text { for } \\
\text { all integers } a, b \text { with } 1<a<x \text { " }
\end{array} \\
\hline
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

$$
\begin{array}{ll}
\text { 1. } \quad 2=2 \cdot 1 \\
\text { 2. } & \text { Prime }(2)^{*}
\end{array}
$$

Arithmetic

Property of integers

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \begin{array}{l}
\text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x) \equiv \text { " } x>1 \text { and } x \neq a \cdot b \text { for } \\
\text { all integers } a, b \text { with } 1<a<x \text { " }
\end{array} \\
\hline
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(E v e n(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. Prime (2)*
3. $\exists y(2=2 \cdot y)$
4. Even(2)
5. Even(2) \wedge Prime(2)
6. $\exists x(\operatorname{Even}(x) \wedge$ Prime $(x))$

Arithmetic
Property of integers
Intro \exists : 1
Defn of Even: 3
Intro ^: 2, 4
Intro \exists : 5

Inference Rules for Quantifiers: First look

* in the domain of P
$\frac{\operatorname{Elim} \exists \mathrm{P}(\mathrm{P})}{\therefore \mathrm{P}(\mathrm{c}) \text { for some special** } \mathrm{c}}$
** By special, we mean that c is a name for a value where $P(c)$ is true. We can't use anything else about that value, so c has to be a NEW name!

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of every even number is even." Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
3. $\forall x\left(E \operatorname{ven}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall	"Let a be arbitrary*"...P(a)	Elim \exists $\exists \mathrm{P} P(\mathrm{x})$ \therefore $\forall \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c		

Prove: "The square of every even number is even." Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of every even number is even." Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)

Assumption
2.6 Even(a^{2})
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(a) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even
Direct proof rule Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \text { Even }(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a)	Elim \exists	$\exists \mathrm{x} \mathrm{P}(\mathrm{x})$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(\mathbf{a}=2 \mathrm{y})$
Assumption Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(a) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even
Direct proof rule Intro $\forall: 1,2$

Intro \exists rule: ?
Need $\mathrm{a}^{2}=2 \mathrm{c}$ for some c

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a)	Elim \exists	$\exists \mathrm{x} \mathrm{P}(\mathrm{x})$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(\mathbf{a}=2 \mathrm{y})$
$2.3 \mathrm{a}=2 \mathrm{~b}$
Definition of Even
Elim \exists : b special depends on a
$2.5 \exists y\left(a^{2}=2 y\right) \quad$ Intro \exists rule: ? $\quad \begin{aligned} & \text { Need } a^{2}=2 c \\ & \text { for some } c\end{aligned}$
2.6 Even $\left(\mathbf{a}^{2}\right) \quad$ Definition of Even
2. $\operatorname{Even}(a) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a)	Elim 3	$\exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.3 \mathrm{a}=2 \mathrm{~b} \quad$ Elim \exists : b special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
Intro \exists rule
Used $a^{2}=2 c$ for $c=2 b^{2}$
2.6 Even $\left(a^{2}\right) \quad$ Definition of Even
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:

$\operatorname{Elim} \exists \quad \exists \mathrm{xP}(\mathrm{x})$
 $\therefore \mathrm{P}(\mathrm{c})$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \geq a) \quad \operatorname{Elim} \forall: 1$
4. $b \geq a$
5. $\forall x(b \geq x)$

Elim \exists : b special depends on a
6. $\exists y \forall x(y \geq x)$ Intro \forall : 2,4
Intro \exists : 5

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:
$\frac{\text { Intro } \forall \text { "Let a be arbitrary*"...P(a) }}{\therefore \quad \forall x P(x)}$

* in the domain of P
$\frac{\operatorname{Elim} \exists \mathrm{B} P(x)}{\therefore \mathrm{P}(\mathrm{c}) \text { for some special** } \mathrm{c}}$
${ }^{* *}$ c has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False

BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:
Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x P(x)$
$\therefore \quad \forall x P(x)$

* in the domain of P. No other name in P depends on a
** c is a NEW name
** c is a NEW name
List all dependencies for c.
List all dependencies for c.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \geq a) \quad \operatorname{Elim} \forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

$\operatorname{lntro} \exists \frac{P(c) \text { for some } c}{\therefore \quad \exists x P(x)}$

* in the domain of P. No other name in P depends on a


```
** c is a NEW name.
```

List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
- They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
- Formal proof methods help to understand how proofs really work in English...
... and give clues for how to produce them.

An English Proof

$$
\begin{array}{|l}
\text { Predicate Definitions } \\
\text { Even }(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)
\end{array}
$$

Prove "There is an even integer"
Proof:
$2=\mathbf{2} \cdot 1$

1. $2=2 \cdot 1$

Arithmetic
so 2 equals 2 times an integer.
Therefore 2 is even.
3. Even(2)
4. $\exists x \operatorname{Even}(x) \quad$ Intro $\exists: 3$

Therefore, there is an even integer

English Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.

Then, by definition, $a=2 b$ for some integer b (depending on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

Since $2 b^{2}$ is an integer, by definition, a^{2} is even.

Since a was arbitrary, it follows that the square of every even number is even.

1. Let a be an arbitrary integer 2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
$2.3 \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}$ special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathrm{a}^{2}\right) \quad$ Definition
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Predicate Definitions
 Even and Odd

Prove "The square of every odd number is odd."

Even and Odd

Predicate Definitions
$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The square of every odd number is odd."

Proof: Let b be an arbitrary odd number.
Then, $b=2 c+1$ for some integer c (depending on b).
Therefore, $\mathrm{b}^{2}=(2 \mathrm{c}+1)^{2}=4 \mathrm{c}^{2}+4 \mathrm{c}+1=2\left(2 \mathrm{c}^{2}+2 \mathrm{c}\right)+1$.
Since $2 c^{2}+2 c$ is an integer, b^{2} is odd. The statement follows since b was arbitrary.

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
- In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- Easily checkable in principle

