
CSE 311: Foundations of Computing

Lecture 8:  Predicate Logic Proofs



Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 

it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A  B  

∴ A → B

Not like other rules

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens
Direct Proof 

Rule



Last class: Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1.2. � → � ∧ Elim: 1.1

1.3. � → � ∧ Elim: 1.1

1.4.1. � Assumption

1.4.2. � MP: 1.2, 1.4.1

1.4.3. � MP: 1.3, 1.4.2

1.4. � → � Direct Proof Rule

1. � → � ∧ � → � → (� → �) Direct Proof Rule



Last class: One General Proof Strategy

1. Look at the rules for introducing connectives to 

see how you would build up the formula you want 

to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 

down the given formulas so that you get the 

pieces you need to do 1.

3. Write the proof beginning with what you figured 

out for 2 followed by 1.



Last Class: Some Inference Rules for Quantifiers

∀x P(x)        
∴ P(a) for any a

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀



Last Class: Predicate Logic Proofs

• Can use

– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)

even on subformulas

– Propositional logic inference rules

whole formulas only

– Propositional logic equivalences

even on subformulas



Last Class: Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. �
 � 
 � �
 � 
 Direct Proof Rule

1.1. �
 � 
 Assumption

1.2 �(
) Elim ∀: 1.1

1.3. �
 � 
 Intro ∃: 1.2



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



Predicate Logic Proofs with more content

• In propositional logic we could just write down 

other propositional logic statements as “givens”

• Here, we also want to be able to use domain 

knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 

define:

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse



A Not so Odd Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”



A Not so Odd Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”

1. 2 = 2⋅1 Arithmetic

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Definition of Even: 2

4. �x Even(x) Intro ∃: 3



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

Prove  “There is an even prime number”



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))

*

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

3. ∃y (2 = 2⋅y) Intro ∃: 1

4. Even(2) Defn of Even: 3

5. Even(2) ∧ Prime(2) Intro ∧: 2, 4

6. ∃x (Even(x) ∧ Prime(x)) Intro ∃: 5

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 

3.   ∀x (Even(x)→Even(x2))



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

 

2.6  Even(a2)

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y) Intro ∃ rule: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b special depends on a

2.5   ∃y (a2 = 2y) Intro ∃ rule: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b special depends on a

2.4   a2 = 4b2 = 2(2b2)     Algebra

2.5   ∃y (a2 = 2y) Intro ∃ rule

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Used a2 = 2c for c=2b2

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x)             Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

∀x P(x)        
∴ P(a) for any a

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

* in the domain of P.  No other   

name in P depends on a 
** c is a NEW name. 

List all dependencies for c.

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)
Intro ∀

∃x P(x)
∴ P(c) for some special** c

Elim ∃



English Proofs

• We often write proofs in English rather than 

as fully formal proofs

– They are more natural to read

• English proofs follow the structure of the 

corresponding formal proofs

– Formal proof methods help to understand how 

proofs really work in English...

... and give clues for how to produce them.



2 = 2⋅1 

so 2 equals 2 times an 

integer.

Therefore 2 is even.

Therefore, there is an 

even integer

An English Proof Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Prove  “There is an even integer”

1. 2 = 2⋅1 Arithmetic

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Defn of Even: 2

4. �x Even(x) Intro ∃: 3

Proof:



English Even and Odd

Prove “The square of every even integer is even.”

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2   ∃y (a = 2y) Definition

2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))

Proof: Let a be an arbitrary 

even integer.  

Then, by definition, a = 2b

for some integer b

(depending on a).

Squaring both sides, we get 

a2 = 4b2 = 2(2b2). 

Since 2b2 is an integer, by 

definition, a2 is even.

Since a was arbitrary, it 

follows that the square of 

every even number is even.



Even and Odd

Prove “The square of every odd number is odd.”

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Even and Odd

Prove “The square of every odd number is odd.”

Proof: Let b be an arbitrary odd number.

Then, b = 2c+1 for some integer c (depending on b).

Therefore, b2 = (2c+1)2 =  4c2 + 4c + 1 = 2(2c2 + 2c) + 1.

Since 2c2+2c is an integer, b2 is odd.  The statement    

follows since b was arbitrary.        

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Proofs

• Formal proofs follow simple well-defined rules and 

should be easy to check

– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 

designed to be easier for humans to read

– Easily checkable in principle


