CSE 311: Foundations of Computing

Lecture 7: Logical Inference continued

Last Class: Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Last class: An inference rule: Modus Ponens

• If A and $A \rightarrow B$ are both true then B must be true

- Given:
 - If it is Wednesday then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Last Class: My First Proof!

Show that r follows from p, p ? q, and q ? r

```
1. p Given
```

2.
$$p \rightarrow q$$
 Given

3.
$$q \rightarrow r$$
 Given

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Last Class: Proofs can use equivalences too

Show that $\neg p$ follows from $p \ 2 \ q$ and $\neg q$

```
1. p \rightarrow q Given
```

2. $\neg q$ Given

3.
$$\neg q \rightarrow \neg p$$
 Contrapositive: 1

4. $\neg p$ MP: 2, 3

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Inference Rules

If A is true and B is true

Requirements: A; B

Conclusions: .. C , D

Then, C must

be true

Then D must

be true

Example (Modus Ponens):

 $A : A \rightarrow B$

•

If I have A and A \rightarrow B both true,

Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$
∴ A, B

∴ A ∧ B

∴ A ∧ B

∴ A ∧ B

∴ A ∨ B; ¬A

∴ B

∴ A ∨ B, B ∨ A

Modus Ponens
A; A → B
∴ B

Direct Proof Rule
∴ A → B

Not like other rules

Show that r follows from p, p q and $(p \land q) \rightarrow r$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

$$A \wedge B$$
 $\therefore A, B$

Show that r follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

2.
$$p \rightarrow q$$
 Given

4.
$$p \wedge q$$
 Intro \wedge : 1, 3

5.
$$p \land q \rightarrow r$$
 Given

$$\begin{array}{c}
p ; p \rightarrow q \\
p ; q \\
\hline
 p \land q ; p \land q \rightarrow r \\
\hline
 r
\end{array}$$

Intro \land

$$p \land q ; p \land q \rightarrow r$$

MP

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given 2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p = F, q = T, r = F

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. ¬*r*

MP: 2,

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19**. *q*
- 20. ¬r

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

This looks like or-elimination.

19. *q*

20. ¬*r*

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

18.
$$\neg \neg s$$

?

¬¬s doesn't show up in the givens but s does and we can use equivalences

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- **17.** *s* ?
- 18. ¬¬s Double Negation: 17
- 19. *q* ∨ Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1 .	$p \wedge s$	Given
	P	

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

No holes left! We just need to clean up a bit.

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. **s** ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. ¬*r* MP: 2, 6

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $p \rightarrow (p \lor q)$. proof subroutine

2.
$$p \vee q$$
 Intro \vee : 1

3.
$$p \rightarrow (p \lor q)$$

Direct Proof Rule

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

```
1. q Given

2. (p \land q) \rightarrow r Given

This is a proof of p \rightarrow r

3.1. p Assumption
3.2. p \land q Intro \land: 1, 3.1 Then, we've shown of p \rightarrow r

3. p \rightarrow r Direct Proof Rule
```

Prove: $(p \land q) \rightarrow (p \lor q)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $(p \land q) \rightarrow (p \lor q)$

- 1.1. $p \wedge q$
- 1.2. *p*
- **1.3.** $p \vee q$
- $1. \quad (p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: 1.1

Intro ∨: **1.2**

Direct Proof Rule

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1
1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2

Direct Proof Rule

 $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Inference Rules for Quantifiers: Easy rules

P(c) for some c
$$\exists x P(x)$$
 $\exists x P(x)$
 $\exists x P(x)$
 $\exists x P(x)$

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore P(a) \text{ for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

$$5. \quad \forall x P(x) \rightarrow \exists x P(x)$$

The main connective is implication so Direct Proof Rule seems good

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro∃" rule makes sense

1.5. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

 $\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$

Intro ∃: ?

Assumption

That requires P(c) for some c.

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1.
$$\forall x P(x)$$
 Assumption

1.2 P(a)

Elim ∀: **1.1**

We could have picked any name or domain expression here.

1.5.
$$\exists x P(x)$$

That requires P(c) for some c.

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\frac{\forall x \ P(x)}{\therefore \ P(a) \ \text{for any } a}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

No holes. Just need to clean up.

1.1.
$$\forall x P(x)$$
 Assumption

1.2 P(a) Elim \forall : 1.1

1.5.
$$\exists x P(x)$$
 Intro \exists : **1.2**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \ \text{for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1.
$$\forall x P(x)$$
 Assumption

1.2 P(a) Elim \forall : 1.1

1.3. $\exists x P(x)$ Intro \exists : **1.2**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.