CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic
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Administrative

* HW1 due today

— Submit via Gradescope by 11:00 pm
— EC1 extra credit submitted separately

e Tomorrow:
— HW2 out
— Quiz sections

— 390Z/ZA sign-up still available
Loew 113 Thursday 3:30-5:00



Last Class: 1-bit Binary Adder

A 0 + 0 =0 (with Cy;; = 0)
+B O0+1=1(withCy,;;=0)
S 1+ 0 =1 (with Cyy; =0)
(Cour) 1+ 1 =0 (withCyyr=1)

Idea: These are chained together, with a carry-in

(C) COUTCIN
AIN [\[\[\[\[\ 1 1 0 0
AlATANALA ol1i1]1
+B BllelBlBI|B ol1l1lo0
S slisiislisl|s 111061

(Cour)



Last Class: Building Boolean Circuits

Design Process:
1. Write down a function table showing desired 0/1
inputs
2. Construct a Boolean algebra expression

 term for each 1 in the column
« sum (or) them to get all 1s

3. Simplify the expression using equivalences
4. Translate Boolean algebra expression to a circuit



Last Class: 1-bit Binary Adder

° . -1 Cour Civ
Inputs: A, B, Carry-in AN AN
e Outputs: Sum, Carry-out Allallallalla
B|B||B|B|B
siisiis|ls|s

A B Cin Cour S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S=A*B *Cy+A*B*Cy +A*B *C, +A*B*C,,
COUT=A’.B.CIN+A.B’.CIN+A.B.CIN’+A.B.CIN



Last Class: Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

— e.g., full adder’s carry-out function

Cout

Can simplify by combining
¢ — with any one of these

A'B Cin + AB’Cin + AB Cin" + A B Cin

A'BCin + AB'Cin + ABCin” + ABCin + ABCin

ANBCin + ABCin + AB'Cin + ABCin” + ABCin
(N +A)BCin + AB'Cin + ABCin’ + ABCin
(1)BCin + AB'Cin + ABCin” + ABCin

B Cin
B Cin
B Cin
B Cin
B Cin
B Cin
B Cin

+

++ + 4+ + +

AB Cin + ABCin” +|ABCin + ABCin
AB'Cin + ABCin + ABCin” + ABCin
A(B +B)Cin + ABCin” + ABCin
A(1)Cin + ABCin” + ABCin

ACin + AB (Cin"+ Cin)

ACin + AB(1) _ |
ACin + AB adding extra copies of

the same term lets us
reuse it for simplification




1-Bit Adder with XOR gates allowed

No Boolean algebra simplifications possible
... but Sum = (A @© B) @D C,

out




Mapping Truth Tables to Logic Gates - extra step

o)

Given a truth table:
2. Write the Boolean expression

Simplify (“minimize”) the Boolean expression

3
4. Draw as gates
5. Map to available gates

F = ABC'+ABC+AB'C+ABC
- AB(C'+C)+AC(B'+B)
— AB+AC
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Multi-bit Ripple-Carry Adder
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Canonical Forms

* Truth table is the unique signhature of a Boolean
Function

 The same truth table can have many gate realizations
— We've seen this already
— Depends on how good we are at Boolean simplification

e Canonical forms
— Standard forms for a Boolean expression
— We all come up with the same expression



Sum-of-Products Canonical Form

* AKA Disjunctive Normal Form (DNF)

* AKA Minterm Expansion ©)

Add the (min)terms together

F= A'B'C + ABC + AB’C + ABC' + ABC’

Read T rows off Convert to
truth table Boolean Algebra

= 001 == A'B’C

= 011 —> A’'BC

e ] 0] =————p AB'C

ey 110 mep ABC’

Rr|lRr|[Rr|Rr|lo|lo|lo|lo] P

Rr|lr|lO|lO|FrRP|RP|O|OC]I @

Rrl|lOoO|lRr|lO|lR|O|lR]|O]1 O

Rrlr|lr|lolr|lolr|o]|l=m

> 11 ] mp ABC




Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0 0 o0 |ABC F in canonical form:
0 0 1 |ABC F(A, B,C) = AB'C + ABC + AB'C + ABC’ + ABC
0 1 0 |ABC | N
0 1 1 | ABC canonical form # minimal form
1 0 0 |ABC F(A, B,C) =ABC+ ABC + AB'C + ABC + ABC'
1 0 1 | ABC = (A'B'+ AB + AB’ + AB)C + ABC’
1 1 0 |ABC = ((A' + A)(B' + B))C + ABC'
1 1 1 | ABC =C+ ’ABC
= ABC' + C

= AB + C



Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
®

Multiply the maxterms together

F =
A B C F Read Fc;?ws off Negq@t)e all Cogzrt to
truth table bits Boolean Algebra

0 0 0 0 | e —

0 0 1 1

0 1 0 0 — —

0 1 1 1

1 0 0 W N — —

1 0 1 1

1 1 0 1

1 1 1 1




Product-of-Sums Canonical Form

« AKA Conjunctive Normal Form (CNF)

 AKA Maxterm Expansion (a)

Multiply the maxterms together
F=(A+B+C)(A+B +C)(A"+B+0()

® @ ®

Read F rows off Negate all Convert to
truth table bits Boolean Algebra

p—p 000 = 11]=——=p A+B+C

— 010 = 101=—>A+B' +C £ F

e ] 00 = 0] ] A" + B + C

Rr|lRr|[Rr|Rr|lo|lo|lo|lo] P

Rrl|lOoO|lRr|lO|lR|O|lR]|O]1 O

Rr|lr|lO|lO|FrRP|RP|O|OC]I @
RrlRr|Rr|lO|lRr|O]lRr|[O] =




Product-of-Sums: Why does this procedure work?

Useful Facts:
e We know (F’) =F
« We know how to get a minterm expansion for F’

F'=ABC' + ABC' + AB'CC

Rr|lRr|[Rr|Rr|lo|lo|lo|lo] P
Rr|lr|lO|lO|FrRP|RP|O|OC]I @

Rrlo|lRr|lO|lFR|O|R]|O] O

Rrlr|lr|lo|lr|lo|lr|o]|l =




Product-of-Sums: Why does this procedure work?

Useful Facts:
e We know (F’) =F
« We know how to get a minterm expansion for F’

F'= AB'C' + ABC' + AB'C’
Taking the complement of both sides...

(F) = (AB'C' + ABC' + AB'CYY’

And using DeMorgan/Comp....
F — (AIBICI)I (AIBCI)I (ABICI)I

Rr|lRr|[Rr|Rr|lo|lo|lo|lo] P
R|l,r|]lo|lO|R|Rr|O|Ol A
rlolrr|lolr|lol—r|lo]l O
Rrlr|lr|lo|lr|lo|lr|o]|l =

=(A+B+C)A+B +C)(A+B+ 0O



Product-of-Sums Canonical Form

Sum term (or maxterm)
— ORed sum of literals - input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0 0 0 |A+B+C F(A,B,C) =(A+B+C)(A+B"+C)(A+ B+ ()
0 0 1 |A+B+C

0 1 0 |A+B+C canonical form = minimal form

0 1 1 |A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
1 0 0 |A+B+C =(A+B+C)(A+B +0C)

1 0 1 |A+B+C (A+B+C)(A+B+C)

1 1 0 |A+B+C =(A+C)(B+ 0O

1 1 1 |A+B+C



Predicate Logic

* Propositional Logic

“If you take the high road and | take the low road then I'll
arrive in Scotland before you.”

* Predicate Logic
“All positive integers x, y, and z satisfy x3 + y3 # z3.”



Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about



Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

I')

QUANTIFIEE



Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<vy”

Sum(x,y, z) i=“x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.



Domain of Discourse

For ease of use, we define one “type”/“domain” that we work
over. This set of objects is called the “domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x =07, “x < 07, “x is a power of two”

(3) “student x has taken course y” “x is a pre-req for z”



Domain of Discourse

For ease of use, we define one “type”/“domain” that we work
over. This set of objects is called the “domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...
(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 57 or ...

(3) “student x has taken course y” “x is a pre-req for z”

“students and courses” or “university entities” or ...



Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @ )

P(x) is true for every x in the domain QUANTIFIEH
read as “for all x, P of x”

dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):  Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examples: Are these true?

* Vx 0dd(x)

VX LessThan5b(x)



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):  Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examp|es; Are these true? It depends on the domain. For example:

{1, 3,-1,-27} Integers Odd Integers

e Vx 0dd(x) True False True

* Vx LessThan4(x) True False False




Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethese true?

¢ dx 0dd(x)

e dx LessThan5b(x)



Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examp|es; Are these true? It depends on the domain. For example:

Positive
{1,3,-1,-27} Integers Multiples of 5
e dx Odd(x) True True True

 dx LessThan4(x) True True False




Statements with Quantifiers

Just like with propositional logic, we need to define variables (this
time predicates) before we do anything else. We must also now
define a domain of discourse before doing anything else.

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even”  Greater(x, y) ::= “x>vy”
Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”

\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"




Statements with Quantifiers

Predicate Definitions

Domain of Discourse
| Positive Integers

Even(x) ::= “xis even”  Greater(x, y) ::= “x>y”
Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x +y =2"

Determine the truth values of each of these statements:

Jx Even(x)

Vx Odd(x)

Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))
Vx Greater(x+1, x)

dx (Even(x) A Prime(x))



Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Determine the truth values of each of these statements:

dx Even(x) T eg.2,4,6,..

Vx Odd(x) F eg.24,6,..

Vx (Even(x) v Odd(x)) T everyinteger is either even or odd
dx (Even(x) A Odd(x)) F  no integer is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T  Even(2) is true and Prime(2) is true



Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even”  Greater(x, y) ::= “x>vy”
| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx dy Greater(y, x)

Vx dy Greater(x, y)

Vx Ay (Greater(y, x) A Prime(y))

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))



Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer X, there is a positive integer y, such thaty > x.
Vx dy Greater(x, y)

For every positive integer X, there is a positive integer y, such that x > y.
Vx Ay (Greater(y, x) A Prime(y))

For every positive integer X, there is a pos. int. y such thaty > x and y is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer x, if x is prime, then x = 2 or x is odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.



Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even”  Greater(x, y) ::= “x>vy”
| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)
There is no greatest positive integer.
Vx dy Greater(x, y)

There is no least positive integer.

Vx 3y (Greater(y, x) A Prime(y))

For every positive integer there is a larger number that is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.”



English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“Red cats like tofu”

“Some red cats don’t like tofu”



English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu” )

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))



English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu” )

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller

“Red cats like tofu” < domain in a “for all” we use

implication.
When there’s no leading
quantification, it means “for all”.
—d When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key ldea: In every domain, exactly one of a
statement and its negation should be true.



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | | {apple} J | {plum, apple}

The only choice that ensures exactly one of the statement and its negation is (b).



De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)




De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)

“There is no largest integer”
—dxVy (x2y)
= Vx—Vy (x2y)
=Vx dy—(x2y)
= Vx dy (x<y)

“For every integer there is a larger integer”



Scope of Quantifiers

dx (P(x) AQ(x)) vs. 3dxP(x) A dxQ(x)



Scope of Quantifiers

dx (P(x) AQ(x)) vs. 3dxP(x) A dxQ(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.



Scope of Quantifiers

Example: Notlargest(x) = dvy Greater (y, x)
= 1z Greater (z, x)

truth value:

doesn’t depend on y or Zz “bound variables”
does depend on X “free variable”

quantifiers only act on free variables of the formula
they quantify

Vx (3y (Pxy) = ¥V xQly, x)))



Quantifier “Style”

Vx(3y (P(x,y) = ¥ x Qly, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...



