CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

Administrative

- HW1 due today
- Submit via Gradescope by 11:00 pm
- EC1 extra credit submitted separately
- Tomorrow:
- HW2 out
- Quiz sections
- 390Z/ZA sign-up still available

Loew 113 Thursday 3:30-5:00

Last Class: 1-bit Binary Adder

A	$0+0=0\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$+B$	$0+1=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
S	$1+0=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$\left(C_{\text {OUT })}\right.$	$1+1=0\left(\right.$ with $\left.C_{\text {OUT }}=1\right)$

Idea: These are chained together, with a carry-in

Last Class: Building Boolean Circuits

Design Process:

1. Write down a function table showing desired $0 / 1$ inputs
2. Construct a Boolean algebra expression

- term for each 1 in the column
- sum (or) them to get all 1s

3. Simplify the expression using equivalences
4. Translate Boolean algebra expression to a circuit

Last Class: 1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {OUT }} \mathrm{C}_{\text {IN }}$				
๑Øᅫの				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{\text { IN }}}$	$\mathbf{C}_{\text {out }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& S=A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I N}^{\prime}+A \cdot B^{\prime} \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{I N} \\
& C_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{I N}+A \cdot B^{\prime} \cdot C_{I N}+A \cdot B \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{I N}
\end{aligned}
$$

Last Class: Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$
$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
= (1) $B C$ in $+A B^{\prime} C i n+A B C i n '+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n '+A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n '+A B C i n$
$=B C i n+A(1) C i n+A B C i n '+A B C i n$
$=B C i n+A C i n+A B(C i n '+C i n)$
$=B C i n+A C i n+A B(1)$
$=B C i n+A C i n+A B$
adding extra copies of
the same term lets us
reuse it for simplification

1-Bit Adder with XOR gates allowed

Mapping Truth Tables to Logic Gates - extra step

Multi-bit Ripple-Carry Adder

Canonical Forms

- Truth table is the unique signature of a Boolean Function
- The same truth table can have many gate realizations
- We've seen this already
- Depends on how good we are at Boolean simplification
- Canonical forms
- Standard forms for a Boolean expression
- We all come up with the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Don't simplify!

(3)

Add the (min)terms together

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(1)

Read T rows off truth table
001
$001 \longrightarrow A^{\prime} B^{\prime} C$
$011 \longrightarrow A^{\prime} B C$
$101 \longrightarrow A B^{\prime} C$
$110 \longrightarrow A B C^{\prime}$
$111 \longrightarrow A C$

Convert to Boolean Algebra

F

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$
1	0	0	$A B^{\prime} C^{\prime}$
1	0	1	$A B^{\prime} \mathrm{C}$
1	1	0	$A B C^{\prime}$
1	1	1	ABC

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
(4)

Multiply the maxterms together
F =
(1)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	Read tru		
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(2)
Negate all bits

ws off
\qquad
\longrightarrow

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Don't simplify!

(4)

Multiply the maxterms together

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Negate all bits
$111 \longrightarrow A+B+C$ $\mathbf{0 1 0} \longrightarrow 101 \longrightarrow \mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}$
Read F rows off truth table

100 \qquad 011
$A^{\prime}+B+C$

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F^{\prime}

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F^{\prime}

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$\mathrm{~A}+\mathrm{B}+\mathrm{C}$
0	0	1	$\mathrm{~A}+\mathrm{B}+\mathrm{C}^{\prime}$
0	1	0	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}$
0	1	1	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
1	0	0	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}$
1	0	1	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}$
1	1	0	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$
1	1	1	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$

F in canonical form:
$\begin{aligned} F(A, B, C) & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\ \text { canonical form } & \neq \text { minimal form } \\ F(A, B, C) & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\ & =(A+B+C)\left(A+B^{\prime}+C\right) \\ & (A+B+C)\left(A^{\prime}+B+C\right) \\ = & (A+C)(B+C)\end{aligned}$

Predicate Logic

- Propositional Logic
"If you take the high road and I take the low road then I'll arrive in Scotland before you."
- Predicate Logic
"All positive integers x, y, and z satisfy $x^{3}+y^{3} \neq z^{3}$."

Predicate Logic

- Propositional Logic
- Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives
- Predicate Logic
- Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

Predicate Logic

Adds two key notions to propositional logic
 - Predicates

- Quantifiers

Predicates

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= " x is a cat"
Prime (x) ::= " x is prime"
HasTaken (x, y) ::= "student x has taken course y "
LessThan $(x, y)::=$ " $x<y$ "
Sum(x, y, z)::= "x+y=z"
GreaterThan5(x) ::= "x>5"
HasNChars(s, n) ::= "string s has length n"
Predicates can have varying numbers of arguments and input types.

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) "x is a cat", "x barks", "x ruined my couch"
(2) " x is prime", " $x=0$ ", " $x<0 ", ~ " x$ is a power of two"
(3) "student x has taken course y " " x is a pre-req for z "

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
"mammals" or "sentient beings" or "cats and dogs" or ...
(2) " x is prime", " $x=0 ", " x<0 ", " x$ is a power of two"
"numbers" or "integers" or "integers greater than 5" or ...
(3) "student x has taken course $y "$ " x is a pre-req for z "
"students and courses" or "university entities" or ...

Quantifiers

We use quantifiers to talk about collections of objects.
$\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "
$\exists x P(x)$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Quantifiers

We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): $\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "

Examples: Are these true?

- $\forall x \operatorname{Odd}(x)$
- $\forall x$ LessThan5(x)

Quantifiers

We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): $\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "

Examples: Are these true? It depends on the domain. For example:

- $\forall x \operatorname{Odd}(x)$
- $\forall x$ LessThan4(x)

$\{1,3,-1,-27\}$	Integers	Odd Integers
True	False	True
True	False	False

Quantifiers

We use quantifiers to talk about collections of objects.
Existential Quantifier ("exists"): $\exists x \mathrm{P}(\mathrm{x})$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Examples: Are these true?

- $\exists x \operatorname{Odd}(x)$
- $\exists x$ LessThan5(x)

Quantifiers

We use quantifiers to talk about collections of objects.
Existential Quantifier ("exists"): $\exists x P(x)$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Examples: Are these true? It depends on the domain. For example:

- $\exists x \operatorname{Odd}(x)$
- $\exists x$ LessThan4(x)

$\{\mathbf{1}, \mathbf{3},-\mathbf{1},-\mathbf{2 7}\}$	Integers	Positive Multiples of 5
True	True	True
True	True	False

Statements with Quantifiers

Just like with propositional logic, we need to define variables (this time predicates) before we do anything else. We must also now define a domain of discourse before doing anything else.

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=$ " $x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Determine the truth values of each of these statements:
$\exists x \operatorname{Even}(x)$
$\forall x \operatorname{Odd}(x)$
$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(\mathrm{x}))$
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
$\forall x$ Greater $(x+1, x)$
$\exists x(E v e n(x) \wedge \operatorname{Prime}(x))$

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=$ " $x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Determine the truth values of each of these statements:
$\exists x \operatorname{Even}(x)$
$\forall x \operatorname{Odd}(x)$
$\forall x(E v e n(x) \vee O d d(x)) \quad T \quad$ every integer is either even or odd
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x)) \quad F \quad$ no integer is both even and odd
$\forall x$ Greater $(x+1, x) \quad T \quad$ adding 1 makes a bigger number
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \quad$ Even(2) is true and Prime(2) is true

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
$\forall x \exists y$ Greater (x, y)
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Statements with Quantifiers (Literal Translations)

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer x, there is a positive integer y, such that $y>x$.
$\forall x \exists y$ Greater (x, y)
For every positive integer x, there is a positive integer y, such that $x>y$.
$\forall x \exists y(G r e a t e r(y, x) \wedge \operatorname{Prime}(y))$
For every positive integer x, there is a pos. int. y such that $y>x$ and y is prime.
$\forall x(\operatorname{Prime}(x) \rightarrow(E q u a l(x, 2) \vee \operatorname{Odd}(x)))$
For each positive integer x, if x is prime, then $x=2$ or x is odd.
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist positive integers x and y such that $\mathrm{x}+2 \mathrm{y}$ and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
There is no greatest positive integer.
$\forall x \exists y$ Greater (x, y)
There is no least positive integer.
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
For every positive integer there is a larger number that is prime.
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
$\exists x \exists y(S u m(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist prime numbers that differ by two."

English to Predicate Logic

```
Domain of Discourse
    Mammals
```

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"Red cats like tofu"
"Some red cats don't like tofu"

English to Predicate Logic

```
Domain of Discourse
```

Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"Red cats like tofu"

$$
\forall x((\operatorname{Red}(x) \wedge \operatorname{Cat}(x)) \rightarrow \operatorname{LikesTofu(x))}
$$

"Some red cats don't like tofu"
$\exists \mathrm{y}((\operatorname{Red}(\mathrm{y}) \wedge \operatorname{Cat}(\mathrm{y})) \wedge \neg \operatorname{LikesTofu}(\mathrm{y}))$

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

When putting two predicates together like this, we use an "and".
"Red cats like tofu"
When there's no leading
quantification, it means "for all".
When restricting to a smaller
domain in a "for all" we use implication.
"Some red cats don't like tofu"

When restricting to a smaller domain in an "exists" we use and.

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Domain of Discourse
\{plum $\}$

Domain of Discourse
\{apple $\}$

Domain of Discourse
\{plum, apple\}

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{x}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \hline
\end{aligned}
$$

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{x}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \hline
\end{aligned}
$$

"There is no largest integer"

$$
\begin{aligned}
& \neg \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \neg \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \exists \mathrm{y}(\mathrm{x}<\mathrm{y})
\end{aligned}
$$

"For every integer there is a larger integer"

Scope of Quantifiers

$\exists x(P(x) \wedge Q(x)) \quad$ vs. $\quad \exists x P(x) \wedge \exists x Q(x)$

Scope of Quantifiers

$$
\exists x(P(x) \wedge Q(x)) \quad \text { vs. } \quad \exists x P(x) \wedge \exists x Q(x)
$$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Scope of Quantifiers

Example: NotLargest(x) $\equiv \exists \mathrm{y}$ Greater (y, x)

$$
\equiv \exists \mathrm{z} \text { Greater }(\mathrm{z}, \mathrm{x})
$$

truth value:
doesn't depend on y or z "bound variables" does depend on x "free variable"
quantifiers only act on free variables of the formula they quantify

$$
\forall x(\exists y(P(x, y) \rightarrow \forall x Q(y, x)))
$$

Quantifier "Style"

This isn't "wrong", it's just horrible style.
Don't confuse your reader by using the same variable multiple times...there are a lot of letters...

