
CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits



If you are worried about Mathy aspects of 311

• Associated 1-credit CR/NC workshop

– CSE 390Z  

– Extra collaborative practice on 311 concepts, study skills, a small 

amount of assigned work

– Meets in Loew 113

– ZA Section Thursdays 3:30-4:50 pm

– If sufficient demand will add a ZB Section Thursdays 5:00-6:20

– Full participation is required for credit

– NOT for help with 311 homework

• Anyone in 311 can sign up but enrollment is limited

– Enrollment in CSE 390Z section ZA will open up later today FCFS

– If you want to register but it is full, show up anyway at 3:30 

tomorrow in Loew 113.



Last class: Some Connectives & Truth Tables

p ¬p

T F

F T

p q p ∧ q

T T T

T F F

F T F

F F F

p q p ∨ q

T T T

T F T

F T T

F F F

p q p ⊕ q

T T F

T F T

F T T

F F F

Negation (not) Conjunction (and)

Disjunction (or) Exclusive Or



Last class: Implication

“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 

promises.  That is “Did I lie?”

The only lie is when:

(a) It’s raining AND

(b) I don’t have my umbrella

p q p → q

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 

umbrella
No No

I do not have 

my umbrella
Yes No



Last class: � →  �

Implication:

– p implies q

– whenever p is true q must be true

– if p then q

– q if p

– p is sufficient for q

– p only if q

– q is necessary for p

p q p → q

T T T

T F F

F T T

F F T



Last class: Biconditional:  � ↔  �

• p iff q

• p is equivalent to q

• p implies q and q implies p

• p is necessary and sufficient for q

p q p ↔ q

T T T

T F F

F T F

F F T



Last class: Garfield Sentence with a Truth Table

� 	 
 ¬
 	 ∨ ¬
 	 ∧ 
 (	 ∧ 
) → � (	 ∧ 
 ) → � ∧ (	 ∨ ¬
)

F F F T T F T T

F F T F F F T F

F T F T T F T T

F T T F T T F F

T F F T T F T T

T F T F F F T F

T T F T T F T T

T T T F T T T T



Converse, Contrapositive

Implication:

p → q

Converse:

q → p

Consider

p: x is divisible by 2

q: x is divisible by 4 

Contrapositive:

¬q → ¬p

Inverse: 

¬p → ¬q

p → q

q → p

¬q → ¬p

¬p → ¬q



Converse, Contrapositive

Implication:

p → q

Converse:

q → p

Consider

p: x is divisible by 2

q: x is divisible by 4 
Divisible By 2 Not Divisible By 2

Divisible By 4

Not Divisible By 4

Contrapositive:

¬q → ¬p

Inverse: 

¬p → ¬q

p → q

q → p

¬q → ¬p

¬p → ¬q

Numbers that are…



Converse, Contrapositive

Implication:

p → q

Converse:

q → p

Consider

p: x is divisible by 2

q: x is divisible by 4 
Divisible By 2 Not Divisible By 2

Divisible By 4 4,8,12,... Impossible

Not Divisible By 4 2,6,10,... 1,3,5,...

Contrapositive:

¬q → ¬p

Inverse: 

¬p → ¬q

p → q

q → p

¬q → ¬p

¬p → ¬q

Numbers that are…



Converse, Contrapositive

Implication:

p → q

Converse:

q → p

How do these relate to each other?

Contrapositive:

¬q → ¬p

Inverse:

¬p → ¬q

p q p → q q → p ¬p ¬q ¬p → ¬q ¬q → ¬p

T T

T F

F T

F F



Converse, Contrapositive

Implication:

p → q

Converse:

q → p

An implication and it’s contrapositive 

have the same truth value!

Contrapositive:

¬q → ¬p

Inverse:

¬p → ¬q

p q p → q q → p ¬p ¬q ¬p → ¬q ¬q → ¬p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T



Tautologies!

Terminology:  A compound proposition is a…

– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p ∨ ¬p

p ⊕ p

(p → q) ∧ p



Tautologies!

Terminology:  A compound proposition is a…

– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p ∨ ¬p

p ⊕ p

(p → q) ∧ p

This is a tautology.  It’s called the “law of the excluded middle”.

If p is true, then p ∨ ¬p is true. If p is false, then p ∨ ¬p is true. 

This is a contradiction.  It’s always false no matter what truth 

value p takes on.

This is a contingency.  When p=T, q=T, (T → T)∧T is true.

When p=T, q=F, (T → F)∧T is false.



Logical Equivalence

A = B means A and B are identical “strings”:

– p ∧ q = p ∧ q

– p ∧ q ≠ q ∧ p



Logical Equivalence

A = B means A and B are identical “strings”:

– p ∧ q = p ∧ q

– p ∧ q ≠ q ∧ p

A ≡ B means A and B have identical truth values:

– p ∧ q ≡ p ∧ q

– p ∧ q ≡ q ∧ p

– p ∧ q ≢ q ∨ p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 

characters.  They “mean” the same thing though.



Logical Equivalence

A = B means A and B are identical “strings”:

– p ∧ q = p ∧ q

– p ∧ q ≠ q ∧ p

A ≡ B means A and B have identical truth values:

– p ∧ q ≡ p ∧ q

– p ∧ q ≡ q ∧ p

– p ∧ q ≢ q ∨ p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 

characters.  They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When p=T and q=F,  p ∧ q is false, but p ∨ q is true!



A ↔ B vs. A ≡ B

A ≡ B is an assertion over all possible truth values

that A and B always have the same truth values.

A ↔ B is a proposition that may be true or false 

depending on the truth values of the variables in A

and B.

A ≡ B and (A ↔ B) ≡ T have the same meaning.



De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Negate the statement:

“My code compiles or there is a bug.”

To negate the statement,

ask “when is the original statement false”.



De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Negate the statement:

“My code compiles or there is a bug.”

To negate the statement,

ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:

My code doesn’t compile and there is not a bug.



De Morgan’s Laws

p q ¬p ¬q ¬p ∨ ¬q p ∧ q ¬(p ∧ q) ¬(p ∧ q) ↔ (¬p ∨ ¬q)

T T

T F

F T

F F

Example: ¬(p ∧ q) ≡ (¬p ∨ ¬q)



De Morgan’s Laws

p q ¬p ¬q ¬p ∨ ¬q p ∧ q ¬(p ∧ q) ¬(p ∧ q) ↔ (¬p ∨ ¬q)

T T F F F T F T

T F F T T F T T

F T T F T F T T

F F T T T F T T

Example: ¬(p ∧ q) ≡ (¬p ∨ ¬q)



De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {

ListNode current = front;

while (current.next != null && current.next.data < value))

current = current.next;

current.next = new ListNode(value, current.next);

}



De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

!(front != null && value > front.data)

front == null || value <= front.data

≡

You’ve been using these for a while!



Law of Implication

p q p → q ¬p ¬p ∨ q p → q ↔ ¬p ∨ q

T T

T F

F T

F F

p → q ≡ ¬p ∨ q



Law of Implication

p q p → q ¬p ¬p ∨ q p → q ↔ ¬p ∨ q

T T T F T T

T F F F F T

F T T T T T

F F T T T T

p → q ≡ ¬p ∨ q



Some Equivalences Related to Implication

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p

p ↔ q ≡ (p→ q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q



Properties of Logical Connectives
We will always give 

you this list!



Computing Equivalence

Describe an algorithm for computing if two logical 

expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2n entries in the column for n variables.



Understanding Connectives

• Reflect basic rules of reasoning and logic

• Allow manipulation of logical formulas

– Simplification

– Testing for equivalence

• Applications

– Query optimization

– Search optimization and caching

– Artificial Intelligence

– Program verification



Digital Circuits

Computing With Logic

– T corresponds to 1 or “high” voltage 

– F corresponds to 0 or “low” voltage

Gates 

– Take inputs and produce outputs (functions)

– Several kinds of gates

– Correspond to propositional connectives (most 
of them)



And Gate

p q p ∧ q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

q

p
OUTAND

“block looks like D of AND”

p
OUTAND

qp ∧ q

vs.



Or Gate

p q p ∨ q

T T T

T F T

F T T

F F F

p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

p
OUTOR

qp ∨ q

vs.

p

q
OR

“arrowhead block looks like V”

OUT



Not Gates

¬p

NOT Gate

p ¬ p

T F

F T

p OUT

1 0

0 1

vs.NOT Connective

Also called 

inverter

p OUTNOT

p OUTNOT



Blobs are Okay!

p OUTNOT

p
q

OUTAND

p
q

OUTOR

You may write gates using blobs instead of shapes!



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

� ∧ ¬� ∨ (¬� ∧ �)


