CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

A CoN- V| ¥ e g i
DADDY, JUNCTIONT ConTUunCTION TuMCTION, HOOKING UP WoRDS AND i NORMAL
WHAT'S A i WHAT'S YoUR FUNCTION? || PHRASES AND CLAUSES! LAMGUAGE,

CONTUNETIONT

‘?‘J(_)ﬂ

g Se,c\toug /\‘bmcw\w of (Jad

I~ B 131 Sov\(ﬂ“” J actvated.
-or(:ésfi\%m 1\1[HS’L'* 1£7
YA

ot acc,eyk A lji‘}ﬁ{r—"(:;\

- Gmclef@\& - Aid You set ewmil,

If you are worried about Mathy aspects of 311

* Associated 1-credit CR/NC workshop
— CSE 390z

— Extra collaborative practice on 311 concepts, study skills, a small
amount of assigned work
— Meets in Loew 113
- ~~——
— ZA Section Thursdays 3:30-4:50 pm
— |If sufficient demand will add a ZB Section Thursdays 5:00-6:20
— Full participation is required for credit

— NOT for help with 311 homework

 Anyone in 311 can sign up but enroliment is limited
— Enrollment in CSE 390Z section ZA will open up later today FCFS

— If you want to register but it is full, show up anyway at 3:30
tomorrow in Loew 113.

Last class: Some Connectives & Truth Tables

Negation (not)

P

—p

T

F

F

T

Disjunction (or)

4 q (pVvVq
T T T
T F T
F T T
F F F

Conjunction (and)

P | g | prq

T T T

T F F

F T F

F F F
Exclusive Or

P | q | pDgq

T T F

T F T

F T T

F F F

X012

Last class: Implication

“If it’s raining, then I have my umbrella”

It's useful to think of implications as
promises. That is “Did I lie?”

m |- |

R Rk

|-

It’s raining It’s not raining
| have m
Y No No
umbrella
| do not have
Yes No
my umbrella

The only lie is when:
(a) It’s raining AND
(b) I don’t have my umbrella

Last class:p — q

Implication:
— p implies q
— whenever p is true g must be true
—if p then q
—qifp
— p is sufficient for q
—ponlyifq
— q is necessary for p

MM |H|-H|T

M| |m|H|e

=M |-l

Last class: Biconditional: p < ¢

e piffq
e pisequivalentto q

p implies g and g implies p
* pis necessary and sufficient for q

P q | p<— (g
T T T T —
T F F
F T —F—
—F | F Dt

Last class: Garfield Sentence with a Truth Table

p|q|r|oriqV-ar qAT (qAT)—>p ((@rr)—>p)Aa(qV-r)
FIF|F|T] T F T ﬁ
FIFIT|F| F F T / F \
F

FITIF|T] T F T / T \
FIT|T|F| T T F / F |
TIF[F[T| T F T T
TIF|T|F| F F T \ F
TIT|F[T| T F T \ T /
TIT|T|F| T T T \ T/

Converse, Contrapositive

Implication: Contrapositive:
P—q —q — —p
Converse:
qa—p —pP — q
Consider

p: x is divisible by 2
q: x is divisible by 4

p—q
q—p

Converse, Contrapositive

Implication:

P—q
Converse:
qa—p

Consider
p: x is divisible by 2
q: x is divisible by 4

—| P=24 (i
2 9-p | T
~q->-»0| F e

Contrapositive:

Numbeﬁrbs that are...

‘ P
Divisible By 2 Not Divisible By 2
@Divisible By 4 L}’@/ (1, ~-
19, __\
NOt Divisible By 4 2/6,10/1 v .(12.5,7 -
—_— T O -~

Converse, Contrapositive

Implication: Contrapositive:
p—q —q — 7P
Converse:
q—p P —q
Consider

p: x is divisible by 2 Numbers that are...

q: x1S divisible by 4 lP Divisible By 2 I\.l:))td’DivisibIe By 2
P—4 " (1/ Divisible By 4 4,8,12,... Impossible
q—p T

1 1 vy ’2
L - N%{Divisible By 4 2,6,10,... 13,5,..
—p = —q l

Converse, Contrapositive

Implication: Contrapositive:
P—q —q — P
ST s 3

Converse:
q—pP —P — q

p| a [p—a| a—=p |p |—a | P> |-q—p
T 1| 7 | T I|F|F T T
TPl | T |[ET ‘ =
FIT| T | ¥ | T|F = T
FIlrl Tl [T] T T

Converse, Contrapositive

Implication:

P—q
Converse:
qa—p

Contrapositive:

An implication and it's contrapositive
have the same truth value!

P, q | P29

q-—=>p

—p

—q

P =>7q

n|m =]

M= |m |-
— (= ||

—|m ||

— = |7

- |m|[=|m

- || — |-

—|=|m|-

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv—p

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
Py —p

This is a tautology. It’s called the “law of the excluded middle”.
If p is true, then p v —p is true. If p is false, then p v —p is true.

pep
This is a contradiction. It’s always false no matter what truth
value p takes on.

(P—=>qrp
This is a contingency. When p=T, g=T, (T — T)AT is true.
When p=T, g=F, (T — F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
— pPAG=pAq

— PAQEQAP

Logical Equivalence

A = B means A and B are identical “strings”:
—PAq=pPpAQq
These are equal, because they are character-for-character identical.
—PAQFQADP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A =B means A and B have identical truth values:
— PAQ=EPACQG

—PbAG=qAPp

—PAqEQVP

e - Vﬁs]/OwQ7l3T:

Logical Equivalence

A = B means A and B are identical “strings”:
—PAG=PpAQ
These are equal, because they are character-for-character identical.
—PAGFQAP
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAG=EPAQ
Two formulas that are equal also are equivalent.
— PAG=EGAP
These two formulas have the same truth table!
— PAGEQVP
When p=T and q=F, p A q is false, but p V q is true!

A~ B vs. A=B

A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A < B is a proposition that may be true or false

depending on the truth values of the variables in A
and B.

A =B and (A < B) =T have the same meaning.

De Morgan’s Laws

R
=
>
2
1

—Pp v /g

Negate the statement:
0o “My code compiles_or there is a bug.|

To negate the statement,
ask “when is the original statement false”.

r\,o/\/(/v\s.] U&QQ&««/)‘Q) /\/l»{’(ﬁ“; L)wﬂ

M+ code dberut c«w@k ok T iutzf

De Morgan’s Laws

=(PAQ)=—pvVv—Q
=(pvQg)=—pA—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.
It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: —(p Ag)=(—pVv—q)
(|

plq| P | —q | = pv—q | pAq| —(pAq) | —(pAq) < (—pV Q)
7| F| F - T T ~
TIF| | 7 T | A
FIT|I T F T ¥ | T ol
Flr] V| T sl 1% - T—
Vd

De Morgan’s Laws

Example: =(p A q) = (—p v —q)

plq| P | —q | pv—q | pAq| —(pAq) | —(pAq) < (—pV Q)
T|T| F F F T F T
T|F F T T F T T
FI1T T F T F T T
F|F T T T F T T

De Morgan’s Laws

—(PAQ)=—pVv—q
—(Pva)=—pA—q

if({?z;:;;t I= null && value > front.dat;;;i::)

ont = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

—(PAQ)=—pVv—q
—(Pva)=—pA—q

I (front != null & value > front.data)

front == null || value <= front.data

You’ve been using these for a while!

Law of Implication

p—>qg=—pVvqg

/ \

p—>q| p | OpVvqg ﬁ—?(be%pvq)
v = ,

F
?
,r

N RN R RS
M| Ad[m|4|R

=
¥ | +—
o ol T T
T T

c—

\

Law of Implication

p—>qg=—pVvqg

pv(qg

p—>q< pvqg

T

m| T4 4S

m| 4[4[

|4

—~ |||

e B e B e I

T
T
T

Some Equivalences Related to Implication

o Ll
S P — = —pVvg ’“[g:d%f
p—q = —qo—p SV
- peq = (p—ag)Aa(d—Dp)

p<—d P <=

We will always give

Properties of Logical Connectives you this list!

Identity * Associative

—pAT=0p —(pvgvr=pv(QVvr) -
—pVF=p —(pAg)AT=pA(gQAT)
Domination istributive —

—PvTET> —-pAQ@Vr)=(@AQV(PAT)
— pAF=F —pV@Ar)=mVeA(pVrT
Idempotent * Absorption o

- pVp=p —pVPAQ=Ep F—

-~ pPApP=p -pA(pPVg=Ep &
Commutative * Negation

—pVg=qVp —pVap=T <—

—PAGQ=EQqAD —pA-p=F

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?
hnoV d/m)b, Y

Compute the entire truth table for both of them!

There are 2" entr'z!l‘in ttw/lyrym f@'ﬁlﬁiﬁle%bk

Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

Digital Circuits

Computing With Logic
— T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several Kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
pAqg g:AND ouT
p q pAq p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F|F| F oo o
O p—

l q_AND ouT D

“block looks like D of AND”

Or Gate

OR Connective VS, OR Gate
pva P Jom)—oun
p qQ | PV(q p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

D ok ;“"/"’N'
NOT Connective VS. NOT \/ate
_Ip p ouT \
Also called
inverter

P —p p ouT
T F 1 0

T 0 1

pom

Blobs are Okay!

You may write gates using blobs instead of shapes!

q
q

Combinational Logic Circuits

0 0 rp—=t—1 L/
/1

I PV

O | »

@os:’

Values get sent along wires connecting gates

Combinational Logic Circuits

'B AND ouT

AND

Values get sent along wires connecting gates

pA(=gA(rVs))
/__:

Combinational Logic Circuits

| 1 G 2 10
OD\(] b.@ om
AND 0 il
) U 011

Wires can send one value to multiple gates!

Combinational Logic Circuits

p

-

AND

AND

Wires can send one value to multiple gates!

(PA=q)V (=g AT)

