CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

If you are worried about Mathy aspects of 311

- Associated 1-credit CR/NC workshop
 - CSE 390Z
 - Extra collaborative practice on 311 concepts, study skills, a small amount of assigned work
 - Meets in Loew 113
 - ZA Section Thursdays 3:30-4:50 pm
 - If sufficient demand will add a ZB Section Thursdays 5:00-6:20
 - Full participation is required for credit
 - NOT for help with 311 homework
- Anyone in 311 can sign up but enrollment is limited
 - Enrollment in CSE 390Z section ZA will open up later today FCFS
 - If you want to register but it is full, show up anyway at 3:30 tomorrow in Loew 113.

Last class: Some Connectives & Truth Tables

Negation (not)

p	$\neg p$
Т	F
F	Т

Conjunction (and)

p	q	p \ q		
Т	Т	Т		
Т	F	F		
F	Т	F		
F	F	F		

Disjunction (or)

p	q	$p \vee q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive Or

p	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

XOR

Last class: Implication

"If it's raining, then I have my umbrella"

It's useful to think of implications as promises. That is "Did I lie?"

р	q	$p \rightarrow q$	
T	T	T	
T	F	F	
F	Т	Т	
F	F	T	

	It's raining	It's not raining
I have my umbrella	No	No
I do not have my umbrella	Yes	No

The only lie is when:

- (a) It's raining AND
- (b) I don't have my umbrella

Last class: $p \rightarrow q$

Implication:

- -p implies q
- whenever p is true q must be true
- if p then q
- -q if p
- -p is sufficient for q
- -p only if q
- q is necessary for p

р	q	$p \rightarrow q$
T	Т	Т
T	F	F
F	Т	Т
F	F	Т

Last class: Biconditional: $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p
- p is necessary and sufficient for q

	p	q	$p \leftrightarrow q$
V		Т	
	Т	F	F
	F	Т	4
	F	F	T

Last class: Garfield Sentence with a Truth Table

	p	q	r	$\neg r$	$q \lor \neg r$	$q \wedge r$	$(q \wedge r) \rightarrow p$	$((q \land r) \rightarrow p) \land (q \lor \neg r)$
١	F	F	F	Т	Т	F	Т	T
	F	F	 -	F	F	F	Т	F
	F١	T	F	Т	Т	F	Т	Т
	F	Т	Т	F	Т	T	F	F
	Т	F	F	Т	Т	F	Т	Т
	Т	F	Т	F	F	F	Т	F
	Т	Т	F	Т	Т	F	Т	T
	Т	Т	Т	F	Т	T	Т	Т

Implication:

$$p \rightarrow q$$

Converse:

$$q \rightarrow p$$

Consider

p: x is divisible by 2

q: x is divisible by 4

$p \rightarrow q$	
$q \rightarrow p$	
$\neg q \rightarrow \neg p$	
$\neg p \rightarrow \neg q$	

Contrapositive:

$$\neg q \rightarrow \neg p$$

Inverse:

$$\neg p \rightarrow \neg q$$

Implication:

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p$$

Converse:

Inverse:

$$q \rightarrow p$$

$$\neg p \rightarrow \neg q$$

Consider

p: x is divisible by 2

q: x is divisible by 4

D	$p \rightarrow q$	1	
1	$q \rightarrow p$	+	
	$\neg q \rightarrow \neg p$	Ţ	-
	$\neg p \rightarrow \neg q$	+	

Numbers that are...

		3		Ш	,
	Divisible By 2		Not Divisible By 2		Divisible By 2
9 Divisible By 4	4,8	,12,	_	_	
Not Divisible By 4	2,6,	-10,1V,-	(1,	3	5.7-

Implication:

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p$$

Converse:

$$q \rightarrow p$$

$$\neg p \rightarrow \neg q$$

Consider

p: x is divisible by 2

q: x is divisible by 4

$p \rightarrow q$	۲
$q \rightarrow p$	+
$\neg q \rightarrow \neg p$	F
$\neg p \rightarrow \neg q$	1

Numbers that are...

	Divisible By 2	Not Divisible By 2
Divisible By 4	4,8,12,	Impossible
Not Divisible By 4	2,6,10,	1,3,5,

Implication:

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p$$

Converse:

$$q \rightarrow p$$

$$\neg p \rightarrow \neg q$$

Implication:

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p$$

Converse:

$$q \rightarrow p$$

$$\neg p \rightarrow \neg q$$

An implication and it's contrapositive have the same truth value!

p	q	$p \rightarrow q$	$q \rightarrow p$	¬p	eg q	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
T	T	Т	Т	F	F	Т	Т
T	F	F	T	F	T	Т	F
F	T	Т	F	T	F	F	T
F	F	Т	Т	T	Т	Т	T

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

$$p \vee \neg p$$

p⊕ p

Cantradicta

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

$$p \vee \neg p$$

This is a tautology. It's called the "law of the excluded middle". If p is true, then $p \lor \neg p$ is true. If p is false, then $p \lor \neg p$ is true.

$$p \oplus p$$

This is a contradiction. It's always false no matter what truth value p takes on.

$$(p \rightarrow q) \land p$$

This is a contingency. When p=T, q=T, $(T \rightarrow T) \land T$ is true. When p=T, q=F, $(T \rightarrow F) \land T$ is false.

Logical Equivalence

A = **B** means **A** and **B** are identical "strings":

$$-p \wedge q = p \wedge q$$

$$- p \wedge q \neq q \wedge p$$

Logical Equivalence

A = B means A and B are identical "strings":

 $- p \wedge q = p \wedge q$

These are equal, because they are character-for-character identical.

 $-p \wedge q \neq q \wedge p$

These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.

$A \equiv B$ means A and B have identical truth values:

$$- p \wedge q \equiv p \wedge q$$

$$- p \wedge q \equiv q \wedge p$$

$$- p \wedge q \not\equiv q \vee p$$

Logical Equivalence

A = B means A and B are identical "strings":

 $-p \wedge q = p \wedge q$

These are equal, because they are character-for-character identical.

 $-p \wedge q \neq q \wedge p$

These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.

$A \equiv B$ means A and B have identical truth values:

 $- p \wedge q \equiv p \wedge q$

Two formulas that are equal also are equivalent.

 $- p \wedge q \equiv q \wedge p$

These two formulas have the same truth table!

 $- p \wedge q \neq q \vee p$

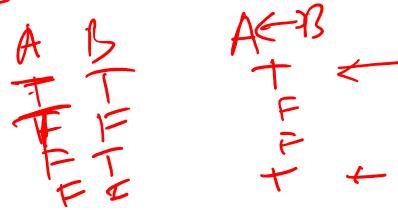
When p=T and q=F, $p \land q$ is false, but $p \lor q$ is true!

$A \leftrightarrow B$ vs. $A \equiv B$

 $A \equiv B$ is an assertion over all possible truth values that A and B always have the same truth values.

 $A \leftrightarrow B$ is a *proposition* that may be true or false depending on the truth values of the variables in A and B.

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.



$$\neg(b \land d) \equiv \neg b \land \neg d$$

Negate the statement:

"My code compiles or there is a bug."

To negate the statement, ask "when is the original statement false".

not (my code compiles) A not (Those is)

And code doern't compile and This isn't a

tog

$$\neg(p \land q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \land \neg q$$

Negate the statement:

"My code compiles or there is a bug."

To negate the statement, ask "when is the original statement false".

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:

My code doesn't compile and there is not a bug.

Example:
$$\neg(p \land q) \equiv (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$	p \ q	$\neg (p \land q)$	$\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т

```
\neg (p \land q) \equiv \neg p \lor \neg q
\neg (p \lor q) \equiv \neg p \land \neg q
if (!(front != null && value > front.data))
front = new ListNode(value, front);
else {
    ListNode current = front;
    while (current.next != null && current.next.data < value))
        current = current.next;
    current.next = new ListNode(value, current.next);
}
```

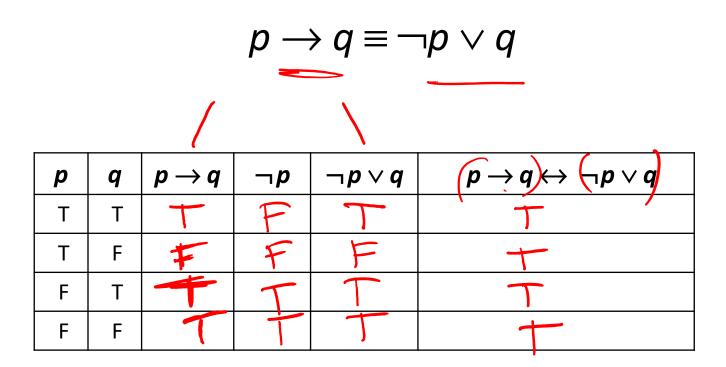
$$\neg(p \land q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \land \neg q$$

```
!(front != null && value > front.data)

=
front == null || value <= front.data</pre>
```

You've been using these for a while!

Law of Implication



Law of Implication

$$p \rightarrow q \equiv \neg p \lor q$$

p	q	$p \rightarrow q$	¬ <i>p</i>	$\neg p \lor q$	$p \rightarrow q \leftrightarrow \neg p \lor q$
Т	Т	Т	F	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Some Equivalences Related to Implication

We will always give you this list!

Properties of Logical Connectives

Identity

$$-p \wedge T \equiv p$$

$$- p \vee F \equiv p$$

Domination

$$- p \lor T \equiv T$$

$$- p \wedge F \equiv F$$

Idempotent

$$- p \lor p \equiv p$$

$$- p \wedge p \equiv p$$

Commutativé

$$- p \lor q \equiv q \lor p$$

$$- p \wedge q \equiv q \wedge p$$

Associative

$$- (p \lor q) \lor r \equiv p \lor (q \lor r) -$$

$$-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

Distributive

$$-p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p \not\leftarrow$$

$$-p \wedge (p \vee q) \equiv p \in$$

Negation

$$- p \lor \neg p \equiv T \quad \longleftarrow$$

$$-p \land \neg p \equiv F$$

Computing Equivalence

Describe an algorithm for computing if two logical expressions/circuits are equivalent.

What is the run time of the algorithm?

n vænablep

Compute the entire truth table for both of them!

There are 2ⁿ entries in the column for n variables all

Understanding Connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification

Digital Circuits

Computing With Logic

- -T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

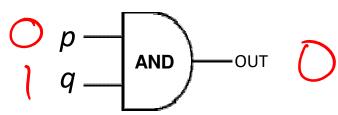
And Gate

AND Connective vs.

p \ q		
p	q	p \ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

AND Gate

p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0



"block looks like D of AND"

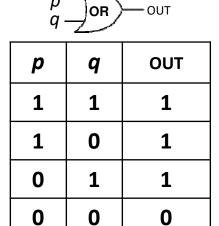
Or Gate

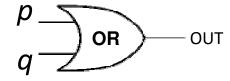
OR Connective

VS.

OR Gate

p∨q		
p	q	p∨q
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F





"arrowhead block looks like V"

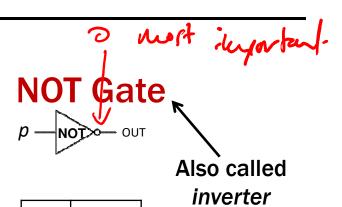
Not Gates

NOT Connective

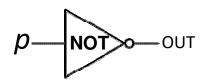
VS.

 $\neg p$

p	$\neg p$
T	F
F	Т

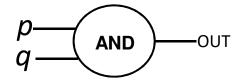


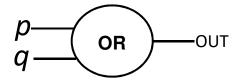
p	OUT
1	0
0	1

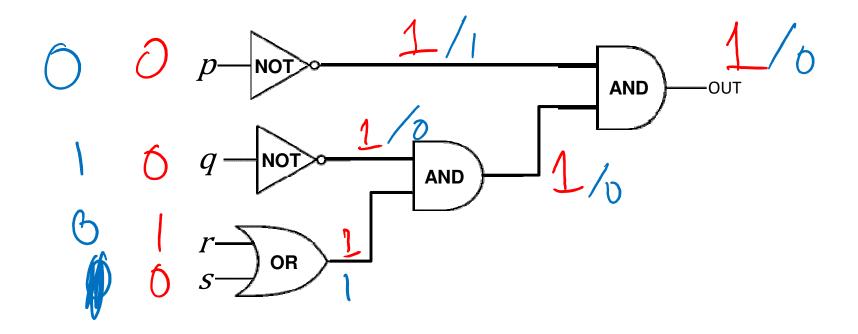


Blobs are Okay!

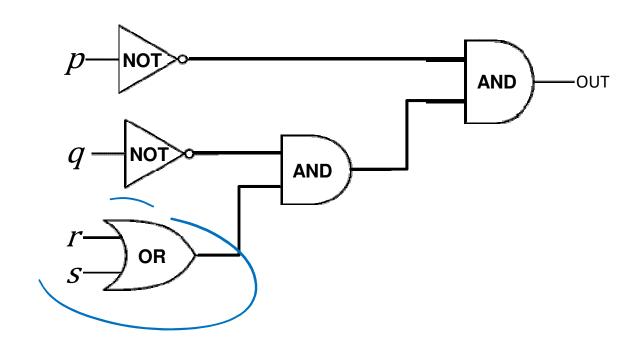
You may write gates using blobs instead of shapes!





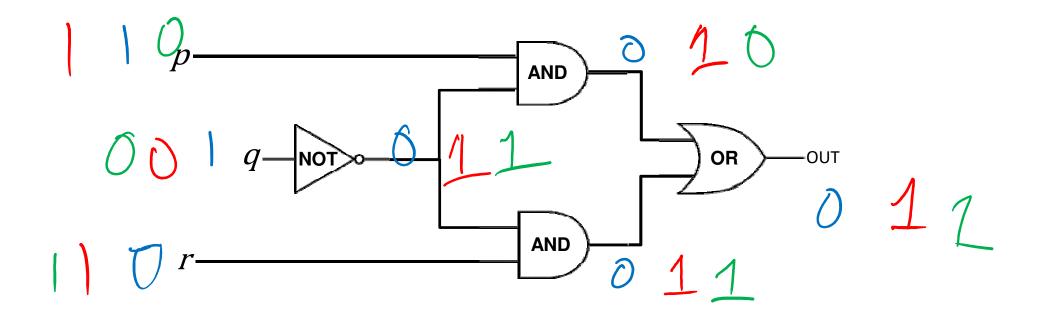


Values get sent along wires connecting gates

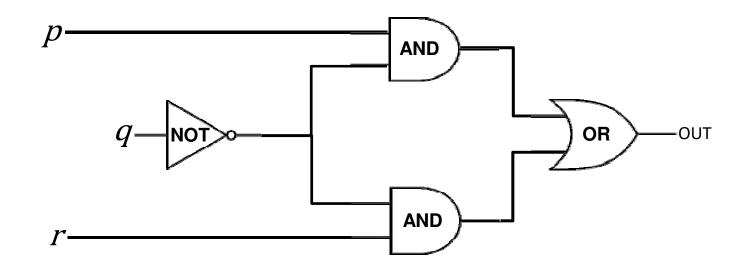


Values get sent along wires connecting gates

$$\neg p \land (\neg q \land (r \lor s))$$



Wires can send one value to multiple gates!



Wires can send one value to multiple gates!

$$(p \land \neg q) \lor (\neg q \land r)$$