CSE 311: Foundations of Computing I

Section 9: Minimization, NFAs, Subset Construction Solutions

1. NFAs

(a) What language does the following NFA accept?

Solution:

All strings of only 0 's and 1 's not containing more than one 1 .
(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

The following is one such NFA:

2. DFAs \& Minimization

(a) Convert the NFA from 1a to a DFA, then minimize it.

Solution:

Here is the minimized form:

(b) Minimize the following DFA:

Solution:

Step 1: q_{0}, q_{2} are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$ and group 2 is $\left\{q_{1}, q_{3}, q_{4}\right\}$.
Step 2: q_{1} is sending a to group 1 while q_{3}, q_{4} are sending a to group 2. So, we divide group 2. We get the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$, group 3 is $\left\{q_{1}\right\}$ and group 4 is $\left\{q_{3}, q_{4}\right\}$.
Step 3: q_{0} is sending a to group 3 and q_{2} is sending a to group 4. So, we divide group 1 . We will have the following groups: group 3 is $\left\{q_{1}\right\}$, group 4 is $\left\{q_{3}, q_{4}\right\}$, group 5 is $\left\{q_{0}\right\}$ and group 6 is $\left\{q_{2}\right\}$.

The minimized DFA is the following:

3. RegExp to NFA

Use our generic construction to build an NFA that recognizes the language given by the following regular expression: $((0 \cup 1) 1)^{*} 001$. If you have time, also give as small an NFA as you can. (Unlike with DFAs there is no good minimization algorithm known for NFAs.)

Solution:

