
CSE 311: Foundations of Computing I
Section 7: Structural Induction and Regular Expressions Solutions

1. Strong Induction repeat question
Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function
f :

f(0) = 0

f(1) = 1

f(n) = 2f(n− 1)− f(n− 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.
Solution:
Let P (n) be “f(n) = n". We prove that P (n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.

Induction Hypothesis: Assume that P (0)∧P (1)∧ . . . P (n−1) are true for some fixed but arbitrary n−1 ≥ 1.

Induction Step: We show P (n):

f(n) = 2f(n− 1)− f(n− 2) [Definition of f ]
= 2(n− 1)− (n− 2) [Induction Hypothesis]
= n [Algebra]

Therefore, P (n) is true for all n ∈ N.

2. Structural Induction
(a) Consider the following recursive definition of strings.

Basis Step: "" is a string
Recursive Step: If X is a string and c is a character then append(c,X) is a string.
Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""

double(append(c,X)) = append(c, append(c, double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

1



Solution:
For a string X, let P(X) be “len(double(X)) = 2len(X). We prove P(X) for all strings X by structural
induction.

Base Case. We show P("") holds. By definition len(double("")) = len("") = 0. On the other hand,
2len("") = 0 as desired.

Induction Hypothesis. Suppose P(X) holds for some arbitrary string X.
Induction Step. We show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c, double(X)))) [By Definition of double]
= 1 + len(append(c, double(X))) [By Definition of len]
= 1 + 1 + len(double(X)) [By Definition of len]
= 2 + 2len(X) [By IH]
= 2(1 + len(X)) [Algebra]
= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Thus, P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:
Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

Solution:
For a tree T , let P(T ) be leaves(T ) ≥ size(T )/2 + 1/2. We prove P(T ) for all trees T by structural
induction.

Base Case. We show that P(·) holds. By definition of leaves(.), leaves(•) = 1 and size(•) = 1. So,
leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2.

Induction Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L and R.
Induction Step: We prove that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (size(L) + size(R) + 1)/2 + 1/2

= size(Tree(•, L,R))/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

2



Thus, the P(T ) holds for all trees T .

3. Regular Expressions
(a) Write a regular expression that matches base 10 non-negative numbers (e.g., there should be no leading

zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all non-negative base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(If you don’t want the substring 000, the only way you can produce 0s is if there are only one or two 0s
in a row, and they are immediately followed by a 1 or the end of the string.)

3


