CSE 311: Foundations of Computing I

Section 6: Induction and Strong Induction Solutions

1. Induction

(a) Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid\left(2^{3}+(2+1)^{3}+(2+2)^{3}\right)$, so $P(2)$ holds.
Induction Hypothesis: Assume that $9 \mid\left(k^{3}+(k+1)^{3}+(k+2)^{3}\right)$ for some arbitrary integer $k>1$.
Note that this is equivalent to assuming that $k^{3}+(k+1)^{3}+(k+2)^{3}=9 \ell$ for some integer ℓ.
Induction Step: Goal: Show $9 \mid\left((k+1)^{3}+(k+2)^{3}+(k+3)^{3}\right)$

$$
\begin{aligned}
(k+1)^{3}+(k+2)^{3}+(k+3)^{3} & =(k+3)^{3}+9 \ell-k^{3} \text { for some integer } \ell \quad \text { [Induction Hypothesis] } \\
& =k^{3}+9 k^{2}+27 k+27+9 \ell-k^{3} \\
& =9 k^{2}+27 k+27+9 \ell \\
& =9\left(k^{2}+3 k+3+\ell\right)
\end{aligned}
$$

So $9 \mid\left((k+1)^{3}+(k+2)^{3}+(k+3)^{3}\right)$, so $P(k) \rightarrow P(k+1)$ for an arbitrary integer $k>1$.
Conclusion: $P(n)$ holds for all integers $n>1$ by induction.
(b) Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

Solution:

Let $P(n)$ be " $6 n+6<2^{n}$ ". We will prove $P(n)$ for all integers $n \geq 6$ by induction.
Base Case $(n=6): 6 \cdot 6+6=42<64=2^{6}$, so $P(6)$ holds.
Induction Hypothesis: Assume that $6 j+6<2^{j}$ for some arbitrary integer $j \geq 6$.
Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$

$$
\begin{aligned}
6(j+1)+6 & =6 j+6+6 & & \\
& <2^{j}+6 & & {[\text { Induction Hypothesis }] } \\
& <2^{j}+2^{j} & & {\left[\text { Since } 2^{j}>6, \text { since } j \geq 6\right] } \\
& <2 \cdot 2^{j} & & \\
& <2^{j+1} & &
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \geq 6$.
Conclusion: $P(n)$ holds for all integers $n \geq 6$ by induction.
(c) Define

$$
H_{i}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

Prove that $H_{2^{n}} \geq 1+\frac{n}{2}$ for $n \in \mathbb{N}$.

Solution:

We define H_{i} more formally as $\sum_{k=1}^{i} \frac{1}{k}$. Let $P(n)$ be " $H_{2^{n}} \geq 1+\frac{n}{2}$ ". We will prove $P(n)$ for all $n \in \mathbb{N}$ by induction.

Base Case $(n=0)$: $H_{2^{0}}=H_{1}=\sum_{k=1}^{1} \frac{1}{k}=1 \geq 1+\frac{0}{2}$, so $P(0)$ holds.
Induction Hypothesis: Assume that $H_{2^{j}} \geq 1+\frac{j}{2}$ for some arbitrary integer $j \in \mathbb{N}$.
Induction Step: Goal: Show $H_{2^{j+1}} \geq 1+\frac{j+1}{2}$

$$
\begin{aligned}
H_{2^{j+1}} & =\sum_{k=1}^{2^{j+1}} \frac{1}{k} \\
& =\sum_{k=1}^{2^{j}} \frac{1}{k}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \\
& \geq 1+\frac{j}{2}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \quad \text { [Induction Hypothesis] } \\
& \left.\geq 1+\frac{j}{2}+2^{j} \cdot \frac{1}{2^{j+1}} \quad \text { [There are } 2^{j} \text { terms in }\left[2^{j}+1,2^{j+1}\right] \text { and each is at least } \frac{1}{2^{j+1}}\right] \\
& \geq 1+\frac{j}{2}+\frac{2^{j}}{2^{j+1}} \\
& \geq 1+\frac{j}{2}+\frac{1}{2} \geq 1+\frac{j+1}{2}
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \in \mathbb{N}$.
Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

2. Strong Induction

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:

Let $P(n)$ be " $f(n)=n$ ". We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Case $n=0: \quad f(0)=0$ by definition.
Induction Hypothesis: Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every integer j with $0 \leq j \leq k$.

Induction Step: We show $P(k+1)$: We have two cases depending on whether $k+1=1$ or $k+1 \geq 2$. When $k+1=1$, we have $f(k+1)=f(1)=1=k+1$ which is what we needed to prove. When $k+1 \geq 2$,
we have

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) & & \text { [Definition of } f] \\
& =2 k-(k-1) & & {[\text { Induction Hypothesis] }} \\
& =k+1 & & {[\text { Algebra] }}
\end{aligned}
$$

Therefore $P(k+1)$ is true in all cases.
Therefore, by induction $f(n)=n$ for all $n \in \mathbb{N}$.

