Section 6: Induction and Strong Induction Solutions

1. Induction

(a) Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.

Solution:

Let P(n) be "9 | $(n^3 + (n+1)^3 + (n+2)^3)$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n=2): $2^3 + (2+1)^3 + (2+2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid (2^3 + (2+1)^3 + (2+2)^3)$, so P(2) holds.

Induction Hypothesis: Assume that $9 \mid (k^3 + (k+1)^3 + (k+2)^3)$ for some arbitrary integer k > 1. Note that this is equivalent to assuming that $k^3 + (k+1)^3 + (k+2)^3 = 9\ell$ for some integer ℓ .

Induction Step: Goal: Show $9 \mid ((k+1)^3 + (k+2)^3 + (k+3)^3)$

$$(k+1)^3 + (k+2)^3 + (k+3)^3 = (k+3)^3 + 9\ell - k^3 \text{ for some integer } \ell \quad \text{[Induction Hypothesis]}$$

$$= k^3 + 9k^2 + 27k + 27 + 9\ell - k^3$$

$$= 9k^2 + 27k + 27 + 9\ell$$

$$= 9(k^2 + 3k + 3 + \ell)$$

So $9 \mid ((k+1)^3 + (k+2)^3 + (k+3)^3)$, so $P(k) \to P(k+1)$ for an arbitrary integer k > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.

(b) Prove that $6n + 6 < 2^n$ for all $n \ge 6$.

Solution:

Let P(n) be " $6n + 6 < 2^n$ ". We will prove P(n) for all integers $n \ge 6$ by induction.

Base Case (n=6): $6 \cdot 6 + 6 = 42 < 64 = 2^6$, so P(6) holds.

Induction Hypothesis: Assume that $6j + 6 < 2^j$ for some arbitrary integer $j \ge 6$.

Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$

$$\begin{array}{ll} 6(j+1)+6=6j+6+6\\ &<2^j+6\\ &<2^j+2^j & [\text{Induction Hypothesis}]\\ &<2\cdot2^j\\ &<2\cdot2^j\\ &<2^{j+1} \end{array}$$

So $P(j) \to P(j+1)$ for an arbitrary integer $j \ge 6$.

Conclusion: P(n) holds for all integers $n \ge 6$ by induction.

(c) Define

$$H_i = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

1

Prove that $H_{2^n} \geq 1 + \frac{n}{2}$ for $n \in \mathbb{N}$.

Solution:

We define H_i more formally as $\sum_{k=1}^i \frac{1}{k}$. Let P(n) be " $H_{2^n} \ge 1 + \frac{n}{2}$ ". We will prove P(n) for all $n \in \mathbb{N}$ by induction.

Base Case (n=0): $H_{2^0} = H_1 = \sum_{k=1}^1 \frac{1}{k} = 1 \ge 1 + \frac{0}{2}$, so P(0) holds.

Induction Hypothesis: Assume that $H_{2^j} \geq 1 + \frac{j}{2}$ for some arbitrary integer $j \in \mathbb{N}$.

Induction Step: Goal: Show
$$H_{2^{j+1}} \geq 1 + \frac{j+1}{2}$$

$$\begin{split} H_{2^{j+1}} &= \sum_{k=1}^{2^{j+1}} \frac{1}{k} \\ &= \sum_{k=1}^{2^{j}} \frac{1}{k} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \\ &\geq 1 + \frac{j}{2} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \qquad \text{[Induction Hypothesis]} \\ &\geq 1 + \frac{j}{2} + 2^{j} \cdot \frac{1}{2^{j+1}} \qquad \text{[There are } 2^{j} \text{ terms in } [2^{j} + 1, 2^{j+1}] \text{ and each is at least } \frac{1}{2^{j+1}}] \\ &\geq 1 + \frac{j}{2} + \frac{2^{j}}{2^{j+1}} \\ &\geq 1 + \frac{j}{2} + \frac{1}{2} \geq 1 + \frac{j+1}{2} \end{split}$$

So $P(j) \to P(j+1)$ for an arbitrary integer $j \in \mathbb{N}$.

Conclusion: P(n) holds for all integers $n \in \mathbb{N}$ by induction.

2. Strong Induction

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

$$\begin{split} f(0) &= 0 \\ f(1) &= 1 \\ f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2 \end{split}$$

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:

Let P(n) be "f(n)=n". We prove that P(n) is true for all $n\in\mathbb{N}$ by strong induction on n.

Base Case n = 0: f(0) = 0 by definition.

Induction Hypothesis: Assume that for some arbitrary integer $k \ge 0$, P(j) is true for every integer j with $0 \le j \le k$.

Induction Step: We show P(k+1): We have two cases depending on whether k+1=1 or $k+1\geq 2$. When k+1=1, we have f(k+1)=f(1)=1=k+1 which is what we needed to prove. When $k+1\geq 2$,

we have

$$f(k+1) = 2f(k) - f(k-1)$$

= $2k - (k-1)$
= $k+1$

 $\begin{tabular}{ll} [Definition of f] \\ [Induction Hypothesis] \\ [Algebra] \end{tabular}$

Therefore P(k+1) is true in all cases.

Therefore, by induction f(n) = n for all $n \in \mathbb{N}$.