CSE 311: Foundations of Computing I

Section 5: Number Theory and Induction

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of 6 modulo 7 .
(d) Does 49 have an multiplicative inverse modulo 7?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

3. Induction

(a) For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2} .
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.
(b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

(c) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, such that $\forall(i \in[n]) . a_{i} \leq b_{i}$, then it must be that:

$$
a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n}
$$

4. Casting Out Nines

(a) Suppose that $a \equiv b(\bmod m)$. Prove by induction that for every integer $n \geq 1, a^{n} \equiv b^{n}(\bmod m)$.
(b) Let $K \in \mathbb{N}$. Prove that if $K \equiv 0(\bmod 9)$, then the sum of the digits of K is a multiple of 9 .

