CSE 311: Foundations of Computing I

Section 5: Number Theory and Induction

1. GCD

- (a) Calculate gcd(100, 50).
- (b) Calculate gcd(17, 31).
- (c) Find the multiplicative inverse of 6 modulo 7.
- (d) Does 49 have an multiplicative inverse modulo 7?

2. Extended Euclidean Algorithm

- (a) Find the multiplicative inverse y of $7 \mod 33$. That is, find y such that $7y \equiv 1 \pmod {33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.
- (b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

3. Induction

(a) For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = 1^2 + 2^2 + \dots + n^2$$
.

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

(b) Define the triangle numbers as $\triangle_n = 1 + 2 + \dots + n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \dots + n^3 = \triangle_n^2$$

(c) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_1, \dots, a_n and b_1, \dots, b_n , such that $\forall (i \in [n]). \ a_i \leq b_i$, then it must be that:

$$a_1 + \dots + a_n \le b_1 + \dots + b_n$$

4. Casting Out Nines

(a) Suppose that $a \equiv b \pmod m$. Prove by induction that for every integer $n \geq 1$, $a^n \equiv b^n \pmod m$.

1

(b) Let $K \in \mathbb{N}$. Prove that if $K \equiv 0 \pmod{9}$, then the sum of the digits of K is a multiple of 9.