
CSE 311: Foundations of Computing I
Section 5: Number Theory and Induction Solutions

1. GCD
(a) Calculate gcd(100, 50).

(b) Calculate gcd(17, 31).

(c) Find the multiplicative inverse of 6 modulo 7.

(d) Does 49 have an multiplicative inverse modulo 7?

Solution:
a) 50

b) 1

c) 6

d) It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be
1.

2. Extended Euclidean Algorithm
(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You should

use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z.

Solution:
Part (a) First, we find the gcd:

gcd(33, 7) = gcd(7, 5) 33 = 7 • 4 + 5 (1)
= gcd(5, 2) 7 = 5 • 1 + 2 (2)
= gcd(2, 1) 5 = 2 • 2 + 1 (3)
= gcd(1, 0) 2 = 1 • 2 + 0 (4)
= 1 (5)

Next, we re-arrange equations (1) - (3) by solving for the remainder:

1 = 5− 2 • 2 (6)
2 = 7− 5 • 1 (7)
5 = 33− 7 • 4 (8)

(9)

Now, we backward substitute into the boxed numbers using the equations:

1 = 5− 2 • 2
= 5− (7− 5 • 1) • 2
= 3 • 5 − 7 • 2
= 3 • (33− 7 • 4)− 7 • 2
= 33 • 3 + 7 • −14
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So, 1 = 33 • 3 + 7 • −14. Thus, 33− 14 = 19 is the multiplicative inverse of 7 mod 33.

Part (b) If 7y ≡ 1(mod 33), then
2 · 7y ≡ 2(mod 33).

So, z ≡ 2× 19(mod 33) ≡ 5(mod 33). This means that the set of solutions is {5 + 33k | k ∈ Z}.

3. Induction
(a) For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn = 12 + 22 + · · ·+ n2.

Prove that for all n ∈ N, Sn = 1
6n(n+ 1)(2n+ 1).

Solution:
Let P(n) be the statement “Sn = 1

6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true
for all n ∈ N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6(0)(0 + 1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary k ∈ N.
Induction Step. Examining Sk+1, we see that

Sk+1 = 12 + 22 + · · ·+ k2 + (k + 1)2 = Sk + (k + 1)2.

By the induction hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute

and rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n ∈ N by induction.

(b) Define the triangle numbers as 4n = 1+2+· · ·+n, where n ∈ N. We showed in lecture that 4n = n(n+1)
2 .

Prove the following equality for all n ∈ N:

03 + 13 + · · ·+ n3 = 42
n
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Solution:

First, note that 4n = (0+1+2+· · ·+n). So, we are trying to prove (03+13+· · ·+n3) = (0+1+· · ·+n)2.
Let P(n) be the statement:

03 + 13 + · · ·+ n3 = (0 + 1 + · · ·+ n)2.

We prove that P(n) is true for all n ∈ N by induction on n.

Base Case. 03 = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some arbitrary k ∈ N.
Induction Step. We show P(k + 1):

03 + 13 + · · · (k + 1)3 = (03 + 13 + · · ·+ k3) + (k + 1)3 [Associativity ]
= (0 + 1 + · · ·+ k)2 + (k + 1)3 [by Induction Hypothesis]

=

(
k(k + 1)

2

)2

+ (k + 1)3 [Substitution from note/class]

= (k + 1)2
(
k2

22
+ (k + 1)

)
[Factor (k + 1)2]

= (k + 1)2
(
k2 + 4k + 4

4

)
[Add via common denominator]

= (k + 1)2
(
(k + 2)2

4

)
[Factor numerator]

=

(
(k + 1)(k + 2)

2

)2

[Take out the square]

= (0 + 1 + · · ·+ (k + 1))2 [Substitution from note/class]

Therefore, P(n) is true for all n ∈ N by induction.

(c) Prove for all n ∈ N that if you have two groups of numbers, a1, · · · , an and b1, · · · , bn, such that
∀(i ∈ [n]). ai ≤ bi, then it must be that:

a1 + · · ·+ an ≤ b1 + · · ·+ bn

Solution:
Let P (n) be that “a1 + · · ·+ an ≤ b1 + · · ·+ bn for all groups of numbers such that ∀(i ∈ [n]). ai ≤ bi”.
We prove this by induction on n:

Base Case (n = 0). In this case there are 0 terms on both sides so the sums on both sides are 0. So the
claim is true for n = 0.

Induction Hypothesis. Suppose for some arbitrary k ∈ N that a1 + · · · ak ≤ b1 + · · · bk for all groups of
numbers a1, · · · , ak and b1, · · · , bk such that ai ≤ bi for all i ∈ [k]

Induction Step. Let the groups of numbers a1, · · · , ak+1 and b1, · · · , bk+1 be two groups such that
ai ≤ bi for all i ∈ [k + 1].
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Note that

a1 + · · ·+ ak+1 = (a1 + · · ·+ ak) + ak+1 [Splitting the summation]
≤ (b1 + · · ·+ bk) + ak+1 [By IH]
≤ (b1 + · · ·+ bk) + bk+1 [By Assumption]
≤ b1 + · · ·+ bk+1 [Algebra]

Thus we have shown that if the claim is true for k, it is true for k + 1.

Therefore, we have shown the claim for all n ∈ N by induction.

4. Casting Out Nines
(a) Suppose that a ≡ b (mod m). Prove by induction that for every integer n ≥ 1, an ≡ bn (mod m).

Solution:
Let P(n) be the statement “an ≡ bn (mod m)”. We prove that P(n) is true for all integers n ≥ 1 by
induction.

Base Case. (n = 1) We have a1 = a and b1 = b, so we have a1 ≡ b1 (mod m) by our assumption that
a ≡ b (mod m) and hence P(1) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary integer k ≥ 1.
Induction Step. We need to prove that ak+1 ≡ bk+1 (mod m). By the inductive hypothesis we have

ak ≡ bk (mod m) and by the assumption we have a ≡ b (mod m). Using the multiplicative property
of mods we have ak · a ≡ bk · b (mod m). But this is just ak+1 ≡ bk+1 (mod m).
Thus, we can conclude that P(k + 1) is true.

Therefore, by induction P (n) is true for all integers n ≥ 1.

(b) Let K ∈ N. Prove that if K ≡ 0 (mod 9), then the sum of the digits of K is a multiple of 9.

Solution:
Write K = (dmdm−1 · · · d1d0)10 where d0, . . . , dm are the base-10 digits of K. Then K =

∑m
i=0 di10

i

by definition. We show that K ≡
∑m

i=0 di (mod 9): Now 10 ≡ 1 (mod 9) and so by part (a) we know
that 10i ≡ 1i (mod 9) for i ≥ 1 which is just 10i ≡ 1 (mod 9). We also have 100 = 1. Therefore, for any
i = 0, . . . ,m by the multiplicative property modulo 9, we have di10

i ≡ di (mod 9). We then apply the
sum property modulo 9 to derive that

∑m
i=0 di10

i ≡
∑m

i=0 di (mod 9). The left-hand quantity is just K
by definition so we have K ≡

∑m
i=0 di (mod 9).

In particular, since K ≡ 0 (mod 9) by assumption, we have
∑m

i=0 di ≡ 0 (mod 9) and hence 9 divides the
sum of the digits of K which is what we wanted to prove.
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