CSE 311: Foundations of Computing I

Section 5: Number Theory and Induction Solutions

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of 6 modulo 7 .
(d) Does 49 have an multiplicative inverse modulo 7?

Solution:

a) 50
b) 1
c) 6
d) It does not. Intuitively, this is because 49 x for any x is going to be $0 \bmod 7$, which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Solution:

Part (a) First, we find the gcd:

$$
\begin{align*}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & 33 & =7 \bullet 4+5 \\
& =\operatorname{gcd}(5,2) & 7 & =5 \bullet 1+2 \\
& =\operatorname{gcd}(2,1) & 5 & =2 \cdot 2+1 \\
& =\operatorname{gcd}(1,0) & 2 & =1 \bullet 2+0 \\
& =1 & &
\end{align*}
$$

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$
\begin{align*}
& 1=5-2 \cdot 2 \tag{6}\\
& 2=7-5 \cdot 1 \tag{7}\\
& 5=33-7 \cdot 4 \tag{8}
\end{align*}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \bullet 2 \\
& =3 \bullet 5-7 \bullet 2 \\
& =3 \bullet(33-7 \bullet 4)-7 \bullet 2 \\
& =33 \bullet 3+7 \bullet-14
\end{aligned}
$$

So, $1=33 \bullet 3+7 \bullet-14$. Thus, $33-14=19$ is the multiplicative inverse of $7 \bmod 33$.

Part (b) If $7 y \equiv 1(\bmod 33)$, then

$$
2 \cdot 7 y \equiv 2(\bmod 33)
$$

So, $z \equiv 2 \times 19(\bmod 33) \equiv 5(\bmod 33)$. This means that the set of solutions is $\{5+33 k \mid k \in \mathbb{Z}\}$.

3. Induction

(a) For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2} .
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

Solution:

Let $\mathrm{P}(n)$ be the statement " $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$ " defined for all $n \in \mathbb{N}$. We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Base Case. When $n=0$, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0 . Thus, $S_{0}=0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1)=0$, we know that $P(0)$ is true.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some arbitrary $k \in \mathbb{N}$.
Induction Step. Examining S_{k+1}, we see that

$$
S_{k+1}=1^{2}+2^{2}+\cdots+k^{2}+(k+1)^{2}=S_{k}+(k+1)^{2} .
$$

By the induction hypothesis, we know that $S_{k}=\frac{1}{6} k(k+1)(2 k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$
\begin{aligned}
S_{k+1} & =S_{k}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =(k+1)\left(\frac{1}{6} k(2 k+1)+(k+1)\right) \\
& =\frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
$$

Thus, we can conclude that $\mathrm{P}(k+1)$ is true.
Therefore, because the base case and induction step hold, $\mathbf{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.
(b) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

Solution:

First, note that $\triangle_{n}=(0+1+2+\cdots+n)$. So, we are trying to prove $\left(0^{3}+1^{3}+\cdots+n^{3}\right)=(0+1+\cdots+n)^{2}$. Let $\mathrm{P}(n)$ be the statement:

$$
0^{3}+1^{3}+\cdots+n^{3}=(0+1+\cdots+n)^{2}
$$

We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.
Base Case. $0^{3}=0^{2}$, so $P(0)$ holds.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some arbitrary $k \in \mathbb{N}$.
Induction Step. We show $\mathrm{P}(k+1)$:

$$
\begin{aligned}
0^{3}+1^{3}+\cdots(k+1)^{3} & =\left(0^{3}+1^{3}+\cdots+k^{3}\right)+(k+1)^{3} & & \text { [Associativity] } \\
& =(0+1+\cdots+k)^{2}+(k+1)^{3} & & \text { [by Induction Hypothesis] } \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & & \text { [Substitution from note/class] } \\
& =(k+1)^{2}\left(\frac{k^{2}}{2^{2}}+(k+1)\right) & & \text { [Factor } \left.(k+1)^{2}\right] \\
& =(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right) & & \text { [Add via common denominator] } \\
& =(k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) & & \text { [Factor numerator] } \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} & & \text { [Take out the square] } \\
& =(0+1+\cdots+(k+1))^{2} & & \text { [Substitution from note/class] }
\end{aligned}
$$

Therefore, $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.
(c) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, such that $\forall(i \in[n]) . a_{i} \leq b_{i}$, then it must be that:

$$
a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n}
$$

Solution:

Let $P(n)$ be that " $a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n}$ for all groups of numbers such that $\forall(i \in[n])$. $a_{i} \leq b_{i}$ ".
We prove this by induction on n :
Base Case $(n=0)$. In this case there are 0 terms on both sides so the sums on both sides are 0 . So the claim is true for $n=0$.

Induction Hypothesis. Suppose for some arbitrary $k \in \mathbb{N}$ that $a_{1}+\cdots a_{k} \leq b_{1}+\cdots b_{k}$ for all groups of numbers a_{1}, \cdots, a_{k} and b_{1}, \cdots, b_{k} such that $a_{i} \leq b_{i}$ for all $i \in[k]$
Induction Step. Let the groups of numbers a_{1}, \cdots, a_{k+1} and b_{1}, \cdots, b_{k+1} be two groups such that $a_{i} \leq b_{i}$ for all $i \in[k+1]$.

Note that

$$
\begin{aligned}
a_{1}+\cdots+a_{k+1} & =\left(a_{1}+\cdots+a_{k}\right)+a_{k+1} & & {[\text { Splitting the summation }] } \\
& \leq\left(b_{1}+\cdots+b_{k}\right)+a_{k+1} & & {[\text { By IH }] } \\
& \leq\left(b_{1}+\cdots+b_{k}\right)+b_{k+1} & & {[\text { By Assumption }] } \\
& \leq b_{1}+\cdots+b_{k+1} & & {[\text { Algebra }] }
\end{aligned}
$$

Thus we have shown that if the claim is true for k, it is true for $k+1$.
Therefore, we have shown the claim for all $n \in \mathbb{N}$ by induction.

4. Casting Out Nines

(a) Suppose that $a \equiv b(\bmod m)$. Prove by induction that for every integer $n \geq 1, a^{n} \equiv b^{n}(\bmod m)$.

Solution:

Let $\mathrm{P}(n)$ be the statement " $a^{n} \equiv b^{n}(\bmod m)$ ". We prove that $\mathrm{P}(n)$ is true for all integers $n \geq 1$ by induction.

Base Case. $(n=1)$ We have $a^{1}=a$ and $b^{1}=b$, so we have $a^{1} \equiv b^{1}(\bmod m)$ by our assumption that $a \equiv b(\bmod m)$ and hence $\mathrm{P}(1)$ is true.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some arbitrary integer $k \geq 1$.
Induction Step. We need to prove that $a^{k+1} \equiv b^{k+1}(\bmod m)$. By the inductive hypothesis we have $a^{k} \equiv b^{k}(\bmod m)$ and by the assumption we have $a \equiv b(\bmod m)$. Using the multiplicative property of mods we have $a^{k} \cdot a \equiv b^{k} \cdot b(\bmod m)$. But this is just $a^{k+1} \equiv b^{k+1}(\bmod m)$.
Thus, we can conclude that $\mathrm{P}(k+1)$ is true.
Therefore, by induction $P(n)$ is true for all integers $n \geq 1$.
(b) Let $K \in \mathbb{N}$. Prove that if $K \equiv 0(\bmod 9)$, then the sum of the digits of K is a multiple of 9 .

Solution:

Write $K=\left(d_{m} d_{m-1} \cdots d_{1} d_{0}\right)_{10}$ where d_{0}, \ldots, d_{m} are the base-10 digits of K. Then $K=\sum_{i=0}^{m} d_{i} 10^{i}$ by definition. We show that $K \equiv \sum_{i=0}^{m} d_{i}(\bmod 9)$: Now $10 \equiv 1(\bmod 9)$ and so by part $($ a) we know that $10^{i} \equiv 1^{i}(\bmod 9)$ for $i \geq 1$ which is just $10^{i} \equiv 1(\bmod 9)$. We also have $10^{0}=1$. Therefore, for any $i=0, \ldots, m$ by the multiplicative property modulo 9 , we have $d_{i} 10^{i} \equiv d_{i}(\bmod 9)$. We then apply the sum property modulo 9 to derive that $\sum_{i=0}^{m} d_{i} 10^{i} \equiv \sum_{i=0}^{m} d_{i}(\bmod 9)$. The left-hand quantity is just K by definition so we have $K \equiv \sum_{i=0}^{m} d_{i}(\bmod 9)$.
In particular, since $K \equiv 0(\bmod 9)$ by assumption, we have $\sum_{i=0}^{m} d_{i} \equiv 0(\bmod 9)$ and hence 9 divides the sum of the digits of K which is what we wanted to prove.

