CSE 311: Foundations of Computing |

Section 5: Number Theory and Induction Solutions

1. GCD
a) Calculate ged(100, 50).

(

(b) Calculate ged(17, 31).

(c) Find the multiplicative inverse of 6 modulo 7.

(d) Does 49 have an multiplicative inverse modulo 77

Solution:
a) 50

b) 1
) 6
)

(@]

d) It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be

1.

2. Extended Euclidean Algorithm
(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y = 1 (mod 33). You should
use the extended Euclidean Algorithm. Your answer should be in the range 0 < y < 33.

(b) Now, solve 7z = 2(mod 33) for all of its integer solutions z.

Solution:
Part (a) First, we find the ged:

ged(33,7) = ged(7,5) 33=[7]ed+5 (1)
= ged(5,2) 7=[5]e1+2 (2)
= ged(2,1) 5=[2]e2+1 (3)
= ged(1,0) 2=12+0 (4)
=1 (5)
Next, we re-arrange equations (1) - (3) by solving for the remainder:
1=5-[2|e2 (6)
2=7—|5]e1 (7)
5=233—[7]e4 (8)
(9)
Now, we backward substitute into the boxed numbers using the equations:
1=5—]2]e2
=5—(7—[5]e1)e2
=3el5|—Te2

—3e(33—[7]e4)—Te2
=33e3+T7e—14



So,1=33e3 +o —14. Thus, 33 — 14 = 19 is the multiplicative inverse of 7 mod 33.

Part (b) If 7y = 1(mod 33), then
2- Ty = 2(mod 33).

So, z = 2 x 19(mod 33) = 5(mod 33). This means that the set of solutions is {5 + 33k | k € Z}.

3. Induction
(a) For any n € N, define S, to be the sum of the squares of the first n positive integers, or

Sp=124+22+ ... +n?
Prove that for all n € N, S, = #n(n+ 1)(2n +1).

Solution:
Let P(n) be the statement “S,, = tn(n + 1)(2n + 1)" defined for all n € N. We prove that P(n) is true

for all n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, Sy = 0. Since é(O)(O +1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some arbitrary k € N.

Induction Step. Examining Sj1, we see that
Sp1=124+22 4+ 4B+ (k+ 12 =S+ (E+ 12

By the induction hypothesis, we know that Sy, = £k(k + 1)(2k + 1). Therefore, we can substitute
and rewrite the expression as follows:

Spi1 = Sk + (k+1)>

_ ék(k +1)(2k +1) + (k +1)2
= (k+1) (ék(% +1) + (k + 1)>

— é(k; +1) (k(2k + 1) + 6(k + 1))
1

6
_1

6
= Sk D+ 1)+ DR+ 1) +1)

(k+1) (2k* + 7k + 6)

(k + 1)(k + 2)(2k + 3)

Thus, we can conclude that P(k 4 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

n(n+1)_

(b) Define the triangle numbers as A,, = 142+ - -+n, where n € N. We showed in lecture that A, = =

Prove the following equality for all n € N:

0°+ 1%+ 4+ n® =A%




Solution:

First, note that A\, = (0+1+2+---4n). So, we are trying to prove (034+134- - -4n3) = (0+1+---+n)>.
Let P(n) be the statement:

C+1B3+ 403 =0+1+---+n)
We prove that P(n) is true for all n € N by induction on n.

Base Case. 0% = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some arbitrary k € N.
Induction Step. We show P(k + 1):

P4+ 1+ (k+1)2 =0+ 1+ + &)+ (k+1)°  [Associativity ]
=(0+1+---4+k2+(k+1)3 [by Induction Hypothesis]

= <k‘i(k2+l))2 + (k+1)3 [Substitution from note/class]
k2
= (k+ 1)2 — + (k+ 1)) [Factor (k + 1)2]

[Add via common denominator|

k+2)?
= (k+1)? ( —Z ) ) [Factor numerator]
k+1)(k+2)\>
_ (A DE+2) [Take out the square]
2
=(0+1+4-+(k+1))? [Substitution from note/class]

Therefore, P(n) is true for all n € N by induction.

Prove for all n € N that if you have two groups of numbers, ay,---,a, and by,---,by,, such that
V(i € [n]). a; < b;, then it must be that:

a1+ dan <by+---+by,

Solution:

Let P(n) be that “a; +---+a, < by +--- + by, for all groups of numbers such that V(i € [n]). a; < b;".
We prove this by induction on n:

Base Case (n = 0). In this case there are 0 terms on both sides so the sums on both sides are 0. So the
claim is true for n = 0.

Induction Hypothesis. Suppose for some arbitrary k € N that aq + -+ - ax < by + - - - b, for all groups of
numbers ay,--- ,a and by, - -, by such that a; < b; for all i € [k]

Induction Step. Let the groups of numbers aj,--- ,agy1 and by,--- ,bgr1 be two groups such that
a; < b; for all i € [k + 1].



Note that

ap+ -+ agr1 = (a1 + -+ ag) + app1 [Splitting the summation]
< (by 4+ be) +ar [By IH]
< (by+ -+ bg) + b [By Assumption]
<bp+- 4 by [Algebra]

Thus we have shown that if the claim is true for &, it is true for k + 1.

Therefore, we have shown the claim for all n € N by induction.

4. Casting Out Nines

(a)

Suppose that a = b (mod m). Prove by induction that for every integer n > 1, a™ = b"™ (mod m).

Solution:

Let P(n) be the statement “a™ = b™ (mod m)". We prove that P(n) is true for all integers n > 1 by
induction.

Base Case. (n = 1) We have a! = a and b! = b, so we have a' = b' (mod m) by our assumption that

a = b (mod m) and hence P(1) is true.
Induction Hypothesis. Suppose that P(k) is true for some arbitrary integer k > 1.

Induction Step. We need to prove that a**! = b**! (mod m). By the inductive hypothesis we have
a® = b* (mod m) and by the assumption we have a = b (mod m). Using the multiplicative property
of mods we have a* - a = b - b (mod m). But this is just a**! = b*+1 (mod m).

Thus, we can conclude that P(k + 1) is true.

Therefore, by induction P(n) is true for all integers n > 1.

Let K € N. Prove that if K =0 (mod 9), then the sum of the digits of K is a multiple of 9.

Solution:

Write K = (dmdm—1---didp)10 Where dy, ..., d,, are the base-10 digits of K. Then K = > " d;10°
by definition. We show that K = > jd; (mod 9): Now 10 = 1 (mod 9) and so by part (a) we know
that 10° = 1% (mod 9) for i > 1 which is just 10° = 1 (mod 9). We also have 10° = 1. Therefore, for any
i =0,...,m by the multiplicative property modulo 9, we have d;10° = d; (mod 9). We then apply the
sum property modulo 9 to derive that > 1" d;10° = Y"1/ d; (mod 9). The left-hand quantity is just K
by definition so we have K = > d; (mod 9).

In particular, since K = 0 (mod 9) by assumption, we have Y " d; = 0 (mod 9) and hence 9 divides the
sum of the digits of K which is what we wanted to prove.



