CSE 311: Foundations of Computing I

Section 4: English Proofs, Sets, and Modular Arithmetic Solutions

1. Primality Checking

When running a brute force check to see whether a number n is prime, you only need to check possible factors up to \sqrt{n}. In this problem, you'll prove why that is the case using a proof by contradiction. Prove that if $n=a b$, then either a or b is at most \sqrt{n}.
(Hint: You want to prove an implication by contradiction; so, start by assuming $n=a b$. Then, continue by writing out the rest of your assumption for the contradiction.)

Solution:

Suppose that $n=a b$. Also suppose for contradiction that both $a>\sqrt{n}$ and $b>\sqrt{n}$. It follows that $a b>\sqrt{n} \sqrt{n}=n$. We clearly can't have both $n=a b$ and $n<a b$; so, this is a contradiction. It follows that a or b is at most \sqrt{n}.

2. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say .
(a) $A=\{1,2,3,2\}$

Solution:

3
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$

Solution:

$$
\begin{aligned}
B & =\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\} \\
& =\{\{ \},\{\{ \}\},\{\{ \}\},\{\{ \}\}, \ldots\} \\
& =\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

So, there are two elements in B.
(c) $C=A \times(B \cup\{7\})$

Solution:

$C=\{1,2,3\} \times\{\varnothing,\{\varnothing\}, 7\}=\{(a, b) \mid a \in\{1,2,3\}, b \in\{\varnothing,\{\varnothing\}, 7\}\}$. It follows that there are $3 \times 3=9$ elements in C.
(d) $D=\varnothing$

Solution:

0 .
(e) $E=\{\varnothing\}$

Solution:

1.

(f) $F=\mathcal{P}(\{\varnothing\})$

Solution:

$2^{1}=2$. The elements are $F=\{\varnothing,\{\varnothing\}\}$.

3. Set $=$ Set

Prove the following set identities.
(a) Let the universal set be \mathcal{U}. Prove $A \cap \bar{B} \subseteq A \backslash B$ for any sets A, B.

Solution:

Let x be arbitrary.

$$
\begin{aligned}
x \in A \cap \bar{B} & \rightarrow x \in A \wedge x \in \bar{B} & & {[\text { Definition of } \cap] } \\
& \rightarrow x \in A \wedge x \notin B & & {[\text { Definition of } \bar{B}] } \\
& \rightarrow x \in A \backslash B & & {[\text { Definition of } \backslash] }
\end{aligned}
$$

Thus, since $x \in A \cap \bar{B} \rightarrow x \in A \backslash B$, it follows that $A \cap \bar{B} \subseteq A \backslash B$, by definition of subset.
(b) Prove that $(A \cap B) \times C \subseteq A \times(C \cup D)$ for any sets A, B, C, D.

Solution:

Let x be an arbitrary element of $(A \cap B) \times C$. Then, by definition of Cartesian product, x must be of the form (y, z) where $y \in A \cap B$ and $z \in C$. Since $y \in A \cap B$ by definition of $\cap, y \in A$ and $y \in B$; in particular, all we care about is that $y \in A$. Since $z \in C$, by definition of \cup, we also have $z \in C \cup D$. Therefore since $y \in A$ and $z \in C \cup D$, by definition of Cartesian product we have $x=(y, z) \in A \times(C \cup D)$.
Since x was an arbitrary element of $(A \cap B) \times C$ we have proved that $(A \cap B) \times C \subseteq A \times(C \cup D)$ as required.

4. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Solution:

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers. By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j. Combining these equations, we see that $a=j(k a)$.
Then, dividing both sides by a, we get $1=j k$. So, $\frac{1}{j}=k$. Note that j and k are integers, which is only possible if $j, k \in\{1,-1\}$. It follows that $b=-a$ or $b=a$.
(b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Solution:

Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$. By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$. By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$. Combining the two equations, we see that $a-b=(k n j)=n(k j)$. By definition of congruence, we have $a \equiv b(\bmod n)$, as required.

