Section 4: English Proofs, Sets, and Modular Arithmetic Solutions

1. Primality Checking

When running a brute force check to see whether a number n is prime, you only need to check possible factors up to \sqrt{n} . In this problem, you'll prove why that is the case using a proof by contradiction. Prove that if n=ab, then either a or b is at most \sqrt{n} .

(*Hint:* You want to prove an implication by contradiction; so, start by assuming n=ab. Then, continue by writing out the rest of your assumption for the contradiction.)

Solution:

Suppose that n=ab. Also suppose for contradiction that both $a>\sqrt{n}$ and $b>\sqrt{n}$. It follows that $ab>\sqrt{n}\sqrt{n}=n$. We clearly can't have both n=ab and n< ab; so, this is a contradiction. It follows that a or b is at most \sqrt{n} .

2. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say .

(a)
$$A = \{1, 2, 3, 2\}$$

Solution:

3

(b)
$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}, \{\}\}, \dots\}$$

Solution:

$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}\}, \dots\}$$

$$= \{\{\}, \{\{\}\}, \{\{\}\}\}, \{\{\}\}, \dots\}$$

$$= \{\emptyset, \{\emptyset\}\}$$

So, there are two elements in B.

(c)
$$C = A \times (B \cup \{7\})$$

Solution:

 $C=\{1,2,3\}\times\{\varnothing,\{\varnothing\},7\}=\{(a,b)\mid a\in\{1,2,3\},b\in\{\varnothing,\{\varnothing\},7\}\}.$ It follows that there are $3\times 3=9$ elements in C.

(d)
$$D = \emptyset$$

Solution:

0.

(e)
$$E = \{\emptyset\}$$

Solution:

1.

(f)
$$F = \mathcal{P}(\{\varnothing\})$$

Solution:

$$2^1 = 2$$
. The elements are $F = \{\emptyset, \{\emptyset\}\}$.

3. Set = Set

Prove the following set identities.

(a) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.

Solution:

Let x be arbitrary.

$$\begin{array}{cccc} x \in A \cap \overline{B} & \to & x \in A \wedge x \in \overline{B} & \text{[Definition of \cap]} \\ & \to & x \in A \wedge x \not \in B & \text{[Definition of \overline{B}]} \\ & \to & x \in A \setminus B & \text{[Definition of \backslash]} \end{array}$$

Thus, since $x \in A \cap \overline{B} \to x \in A \setminus B$, it follows that $A \cap \overline{B} \subseteq A \setminus B$, by definition of subset.

(b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Solution:

Let x be an arbitrary element of $(A\cap B)\times C$. Then, by definition of Cartesian product, x must be of the form (y,z) where $y\in A\cap B$ and $z\in C$. Since $y\in A\cap B$ by definition of \cap , $y\in A$ and $y\in B$; in particular, all we care about is that $y\in A$. Since $z\in C$, by definition of \cup , we also have $z\in C\cup D$. Therefore since $y\in A$ and $z\in C\cup D$, by definition of Cartesian product we have $x=(y,z)\in A\times (C\cup D)$.

Since x was an arbitrary element of $(A \cap B) \times C$ we have proved that $(A \cap B) \times C \subseteq A \times (C \cup D)$ as required.

4. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Solution:

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers. By the definition of divides, we have $a \neq 0$, $b \neq 0$ and b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by a, we get 1=jk. So, $\frac{1}{j}=k$. Note that j and k are integers, which is only possible if $j,k\in\{1,-1\}$. It follows that b=-a or b=a.

(b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

2

Solution:

Suppose $n\mid m$ with n,m>1, and $a\equiv b\pmod m$. By definition of divides, we have m=kn for some $k\in\mathbb{Z}$. By definition of congruence, we have $m\mid a-b$, which means that a-b=mj for some $j\in\mathbb{Z}$. Combining the two equations, we see that a-b=(knj)=n(kj). By definition of congruence, we have $a\equiv b\pmod n$, as required.