CSE 311: Foundations of Computing I

Section 1: Logic Solutions

1. Exclusive Or

For each of the following, decide whether inclusive-or or exclusive-or is intended:

(a) Experience with C or Java is required.

Solution:

Inclusive Or.

(b) Lunch includes soup or salad.

Solution:

Exclusive Or.

(c) Publish or perish

Solution:

Exclusive Or.

(d) To enter the country you need a passport or Global Entry card.

Solution:

Inclusive Or.

2. Translations

For each of the following, define propositional variables and translate the sentences into logical notation.

(a) I will remember to send you the address only if you send me an e-mail message.

Solution:

p: I will remember to send you the address

q: You send me an e-mail message

$$p \to q$$

(b) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.

Solution:

p: Berries are ripe along the trail

q: Hiking is safe

r: Grizzly bears have not been seen in the area

$$p \to (q \leftrightarrow r)$$

1

(c) Unless I am trying to type something, my cat is either eating or sleeping.

Solution:

 $p: \mathsf{My}\ \mathsf{cat}\ \mathsf{is}\ \mathsf{eating}$

 $q: \mathsf{My} \mathsf{\ cat\ is\ sleeping}$

 $r: {\rm I'm}\ {\rm trying}\ {\rm to}\ {\rm type}$

$$\neg r \to (p \oplus q)$$

3. Teatime

Consider the following sentence:

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

(a) Define propositional variables and translate the sentence into an expression in logical notation.

Solution:

p: I am drinking tea

 $q: \mathsf{I}$ am eating a cookie

$$\boxed{(p \to q) \lor (q \to p)}$$

(b) Fill out a truth table for your expression.

Solution:

p	q	$(p \to q)$	$(q \rightarrow p)$	$(p \to q) \lor (q \to p)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

(c) Based on your truth table, classify the original sentence as a contingency, tautology, or contradiction.

Solution:

Tautology

4. Truth Tables

Write a truth table for each of the following:

(a)
$$(p \oplus q) \lor (p \oplus \neg q)$$

Solution:

p	q	$p\oplus q$	$p \oplus \neg q$	$(p \oplus q) \vee (p \oplus \neg q)$
Т	Т	F	Т	Т
Т	F	Т	F	Т
F	Т	Т	F	Т
F	F	F	Т	Т

(b)
$$(p \lor q) \to (p \oplus q)$$

Solution:

p	q	$p \lor q$	$p\oplus q$	$(p\vee q)\to (p\oplus q)$
Т	Т	Т	F	F
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	F	F	Т

(c)
$$p \leftrightarrow \neg p$$

Solution:

p	$\neg p$	$p \leftrightarrow \neg p$
Т	F	F
F	Т	F

5. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

3

(a)
$$p \rightarrow q$$

$$q \rightarrow p$$

Solution:

When $p=\mathsf{T}$ and $q=\mathsf{F}$, then $p\to q\equiv \mathsf{F}$, but $q\to p\equiv \mathsf{T}$.

(b)
$$p \to (q \land r)$$

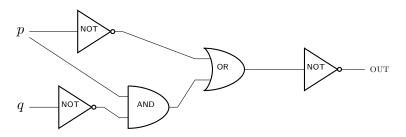
$$(p \to q) \wedge r$$

Solution:

When $p=\mathsf{F}$ and $r=\mathsf{F}$, then $p\to (q\wedge r)\equiv \mathsf{T}$, but $(p\to q)\wedge r\equiv \mathsf{F}.$

6. Circuitous

Translate the following circuit into a logical expression.



Solution:

$$\neg(\neg p \lor (p \land \neg q))$$