
Relations And Graphs CSE 311 Autumn 20

Lecture 22



Announcements

Midterm grades are out
Median was 91% -- you did very well! Even if it did take longer than I intended it to.

Also “grade projections” to interpret your work so far (on Ed).

If you want to talk to me one-on-one about grades, I added a few more 
slots tomorrow. 

Updated HW5 P6. There was a typo in the “find the bug” problem
If you found the typo, that’s a bug. You can explain (just) that bug to get full credit.

If you haven’t started yet (or you didn’t see the typo), there’s the bug I intended to 
put in there still. You can also find that one and explain (just) that bug to get full 
credit.



Announcements

Thanksgiving is on Thursday!

So there’s no class Thursday or Friday.

Wednesday’s lecture is wrapping up this slide deck. We’ll use the 
remaining time to talk about common misconceptions from the 
midterm.

Wednesday’s polleverywhere will open tonight it’s “what question do 
you most want to talk about?” 



Context Free Grammars

A context free grammar (CFG) is a finite set of production rules over:
An alphabet Σ of “terminal symbols”

A finite set 𝑉 of “nonterminal symbols”

A start symbol (one of the elements of 𝑉) usually denoted 𝑆.

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form

𝐴 → 𝑤1 𝑤2 ⋯|𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ ∗ is a string of nonterminals and terminals.



Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

Generate 2 + 3 ∗ 4 in two different ways



Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝑥 + 𝐸 ⇒
(2 ∗ 𝑥) + 𝑦

Generate 2 + 3 ∗ 4in two different ways

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4



Parse Trees

Suppose a context free grammar 𝐺 generates a string 𝑥

A parse tree of 𝑥 for 𝐺 has
Rooted at 𝑆 (start symbol)

Children of every 𝐴 node are labeled with the characters of 𝑤 for some 𝐴 → 𝑤

Reading the leaves from left to right gives 𝑥.

𝑆 → 0𝑆0 1𝑆1 0 1 𝜀
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Back to the arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Two parse trees for 2 + 3 ∗ 4
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How do we encode order of operations

If we want to keep “in order” we want there to be only one 
possible parse tree. 

Differentiate between “things to add” and “things to multiply”

Only introduce a * sign after you’ve eliminated the possibility of 
introducing another + sign in that area.

𝐸 → 𝑇|𝐸 + 𝑇

𝑇 → 𝐹|𝑇 ∗ 𝐹

𝐹 → 𝐸 |𝑁

𝑁 → 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7|8|9
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CNFs in practice

Used to define programming languages. 

Often written in Backus-Naur Form – just different notation

Variables are <names-in-brackets>

like <if-then-else-statement>, <condition>, <identifier>

→ is replaced with ∷= or ∶



BNF for C   (no <...> and uses : instead of ::=)



Parse Trees

Remember diagramming sentences in middle school?

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>



Parse Trees

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

The old man the boat. 



The old man the boat

By Jochen Burghardt - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92742400



Power of Context Free Languages

There are languages CFGs can express that regular expressions can’t
e.g. palindromes

What about vice versa – is there a language that a regular expression 
can represent that a CFG can’t?
No!

Are there languages even CFGs cannot represent?
Yes!

{0𝑘1𝑗2𝑘3𝑗|𝑗, 𝑘 ≥ 0} cannot be written with a context free grammar. 



Takeaways

CFGs and regular expressions gave us ways of succinctly representing 
sets of strings
Regular expressions super useful for representing things you need to search for

CFGs represent complicated languages like “java code with valid syntax”

After Thanksgiving, we’ll talk about how each of these are “equivalent to 
weaker computers.”

Next time: Two more tools for our toolbox.



Relations and Graphs



Relations

Wait what?

≤ is a relation on ℤ.

“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

(3,4) is an element of the set that defines the relation. 

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨 × 𝑩
A (binary) relation on 𝑨 is a subset of 𝑨 × 𝑨

Relations



Relations, Examples

It turns out, they’ve been here the whole time

< on ℝ is a relation

I.e. { 𝑥, 𝑦 ∶ 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ ℝ}.

= on Σ∗ is a relation

i.e. { 𝑥, 𝑦 ∶ 𝑥 = 𝑦 and 𝑥, 𝑦 ∈ Σ∗}

For your favorite function 𝑓, you can define a relation from its domain to 
its co-domain

i.e. { 𝑥, 𝑦 ∶ 𝑓 𝑥 = 𝑦}

“𝑥 when squared gives 𝑦” is a relation

i.e. { 𝑥, 𝑦 : 𝑥2 = 𝑦, 𝑥, 𝑦 ∈ ℝ}



Relations, Examples

Fix a universal set 𝒰.

⊆ is a relation. What’s it on?

𝒫(𝒰)
The set of all subsets of 𝒰



More Relations

𝑅1 = { 𝑎, 1 , 𝑎, 2 , 𝑏, 1 , 𝑏, 3 , 𝑐, 3 }

Is a relation (you can define one just by listing what relates to what)

Equivalence mod 5 is a relation. 

{ 𝑥, 𝑦 ∶ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 5 }

We’ll also say “x relates to y if and only if they’re congruent mod 5”



Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity

A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.

∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫( 1,2,3 ) but 1 ∉ 𝒫 1,2,3 .



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

This was a proof that the relation { 𝒂, 𝒃 ∶ 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 } is symmetric!

It was actually overkill to show if and only if. Showing just one direction 

turns out to be enough!



You’ve also done a proof of transitivity!

You did this proof on HW4. You were showing:
| is a transitive relation on ℤ+.



More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity

A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ



You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ+

for all 𝑎, 𝑏 ∈ 𝑆, [ 𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the 
definition in the box above 

The box version is easier to understand, the other version is usually 
easier to prove.

Antisymmetry

A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]



Try a few of your own

Decide whether each of these relations are 

Reflexive, symmetric, antisymmetric, and 
transitive.

⊆ on 𝒫(𝒰)

≥ on ℤ

> on ℝ

| on ℤ+

| on ℤ

≡ (𝑚𝑜𝑑 3) on ℤ

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 

with your UW identity

Or text cse311 to 22333

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]



Try a few of your own

Decide whether each of these relations are 

Reflexive, symmetric, antisymmetric, and 
transitive.

⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive

≥ on ℤ reflexive, antisymmetric, transitive

> on ℝ antisymmetric, transitive

| on ℤ+ reflexive, antisymmetric, transitive

| on ℤ reflexive, transitive

≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, 

[ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [ 𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [ 𝒂, 𝒂 ∈ 𝑹]



Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:

A relation that is reflexive, symmetric, and transitive is 

called an “equivalence relation”

Equivalence Relation

A relation that is reflexive, antisymmetric, and transitive is 

called a “partial order”

Partial Order Relation



Equivalence Relations

Equivalence relations “act kinda like equals”

≡ (mod n) is an equivalence relation.

≡ on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.

An equivalence relation 𝑅 on 𝑆 divides 𝑆 into sets 𝑆1, … 𝑆𝑘 such that.

∀𝑠 (𝑠 ∈ 𝑆𝑖 for some 𝑖)

∀𝑠, 𝑠′ (𝑠, 𝑠′ ∈ 𝑆𝑖 for some 𝑖 if and only if 𝑠, 𝑠′ ∈ 𝑅)

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖 ≠ 𝑗



Partial Orders

Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order

But it’s only kinda like less than – it’s possible that some elements can’t 
be compared.

| on ℤ+ is a partial order

⊆ on 𝒫(𝒰) is a partial order

𝑥 is a prerequisite of (or-equal-to) 𝑦 is a partial order on CSE courses



Why Bother?

If you prove facts about all equivalence relations or all partial orders, 
you instantly get facts in lots of different contexts.

If you learn to recognize partial orders or equivalence relations, you can 
get a lot of intuition for new concepts in a short amount of time. 



Combining Relations

Given a relation 𝑅 from 𝐴 to 𝐵

And a relation 𝑆 from 𝐵 to 𝐶,

The relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 is 

{ 𝑎, 𝑐 ∶ ∃𝑏[ 𝑎, 𝑏 ∈ 𝑅 ∧ 𝑏, 𝑐 ∈ 𝑆]}

Yes, I promise it’s 𝑆 ∘ 𝑅 not 𝑅 ∘ 𝑆 – it makes more sense if you think 
about relations (𝑥, 𝑓 𝑥 ) and (𝑥, 𝑔 𝑥 )

But also don’t spend a ton of energy worrying about the order, we 
almost always care about 𝑅 ∘ 𝑅, where order doesn’t matter.



Combining Relations

To combine relations, it’s a lot easier if we can see what’s happening.

We’ll use a representation of a directed graph



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one 
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge 

(𝑣𝑘 , 𝑣0) with 𝑘 > 0



Representing Relations

To represent a relation 𝑅 on a set A, have a vertex for each element of 𝐴
and have an edge (𝑎, 𝑏) for every pair in 𝑅.

Let 𝐴 be {1,2,3,4} and 𝑅 be { 1,1 , 1,2 , 2,1 , 2,3 , 3,4 }

1

3 4

2



Combining Relations

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

1

3

2 1

3

2



Combining Relations

1

3

2 1

3

2

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆



Combining Relations

Let 𝑅 be a relation on 𝐴.

Define 𝑅0 as { 𝑎, 𝑎 ∶ 𝑎 ∈ 𝐴}

𝑅𝑘 = 𝑅𝑘−1 ∘ 𝑅

𝑎, 𝑏 ∈ 𝑅𝑘 if and only if there is a path of length 𝑘 from 𝑎 to 𝑏 in 𝑅.

We can find that on the graph!



More Powers of 𝑅.

For two vertices in a graph, 𝑎 can reach 𝑏 if there is a path from 𝑎 to 𝑏.

Let 𝑅 be a relation on the set 𝐴. The connectivity relation 𝑅∗ consists of 
all pairs (𝑎, 𝑏) such that 𝑎 can reach 𝑏 (i.e. there is a path from 𝑎 to 𝑏 in 
𝑅)

𝑅∗ = 𝑘=0ڂ
∞ 𝑅𝑘

Note we’re starting from 0 (the textbook makes the unusual choice of 
starting from 𝑘 = 1). 



What’s the point of 𝑅∗

𝑅∗ is also the “reflexive-transitive closure of 𝑅.

It answers the question “what’s the minimum amount of edges I would 
need to add to 𝑅 to make it reflexive and transitive.

Why care about that? The transitive-reflexive closure can be a summary 
of data – you might want to precompute it so you can easily check if 𝑎
can reach 𝑏 instead of recomputing it every time.



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive



Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive

Every vertex has a “self-loop” (an edge from the vertex to itself)

Every edge has its “reverse edge” (going the other way) also in the graph.

No edge has its “reverse edge” (going the other way) also in the graph.

If there’s a length-2 path from 𝑎 to 𝑏 then there’s a direct edge from 𝑎 to 𝑏


