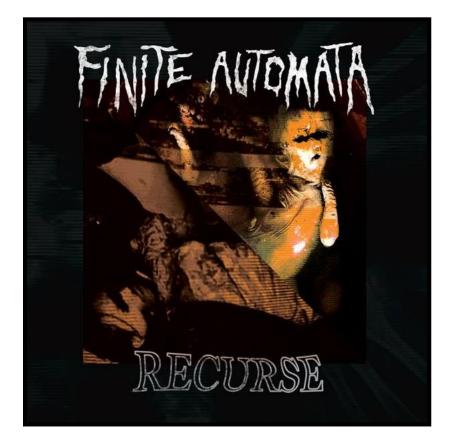
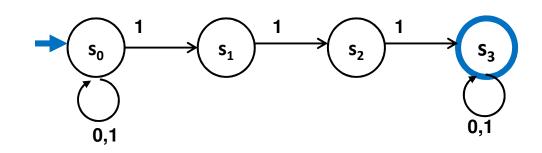
CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA→DFA



Last time: Nondeterministic Finite Automata (NFA)

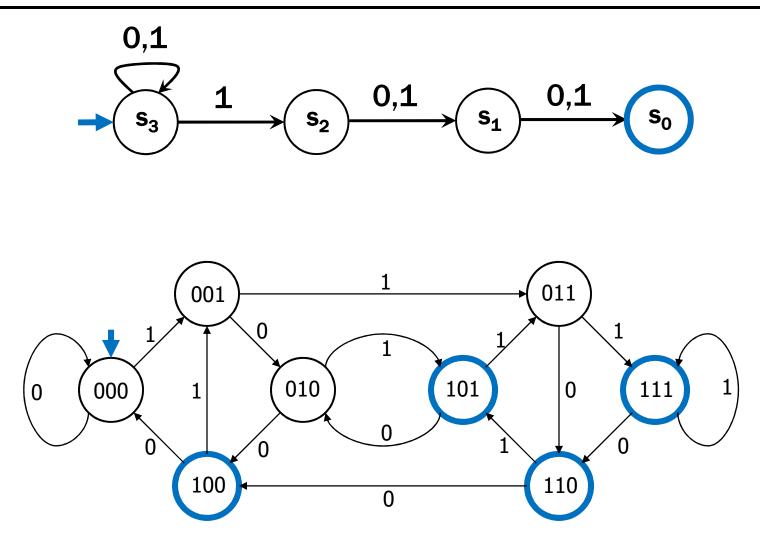
- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\epsilon}$
- Defn: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state



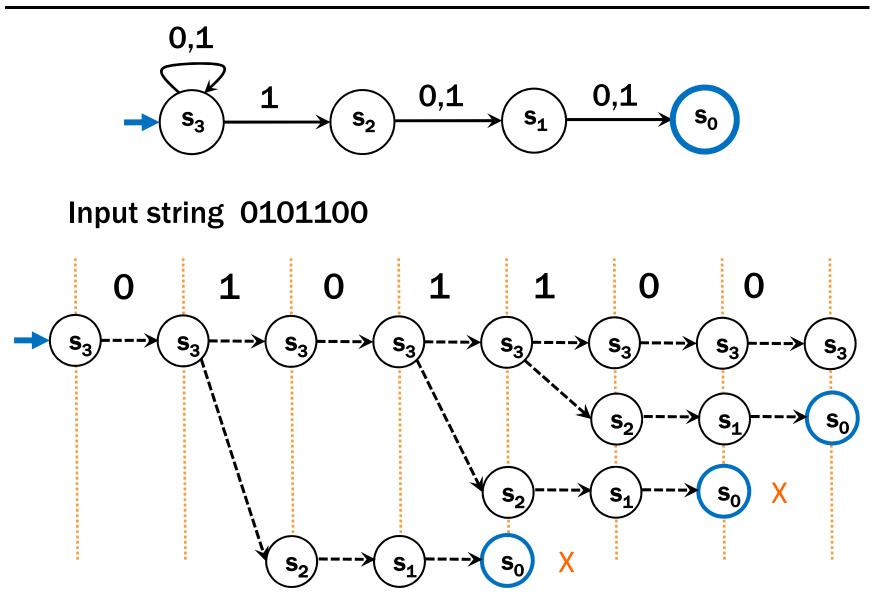
Last time: Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Last time: Compare with the smallest DFA



Last time: Parallel Exploration view of an NFA



Theorem: For any set of strings (language) *A* described by a regular expression, there is an NFA that recognizes *A*.

Proof idea: Structural induction based on the recursive definition of regular expressions...

- Basis:
 - $-\emptyset$, ϵ are regular expressions
 - *a* is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are: (A \cup B) (AB) A*

Base Case

• Case \emptyset :

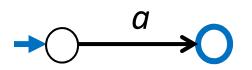
• **Case** ε:

• Case *a*:

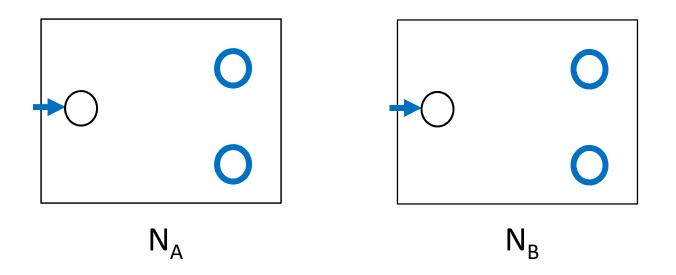
Base Case

• Case \emptyset :

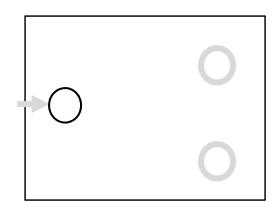
• Case *a*:

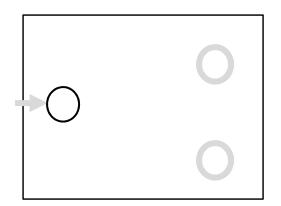


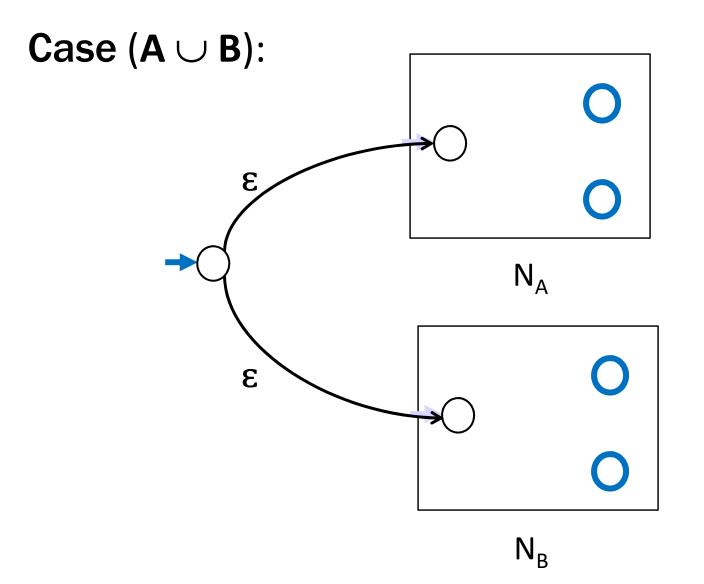
• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B



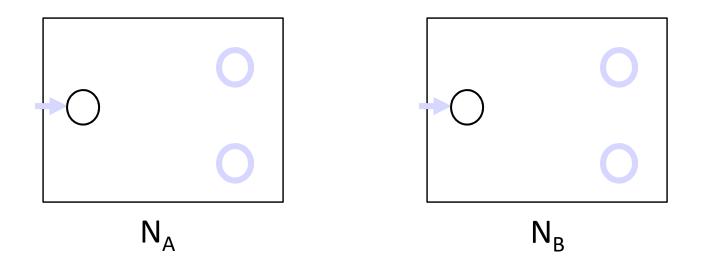
Case (A \cup B):



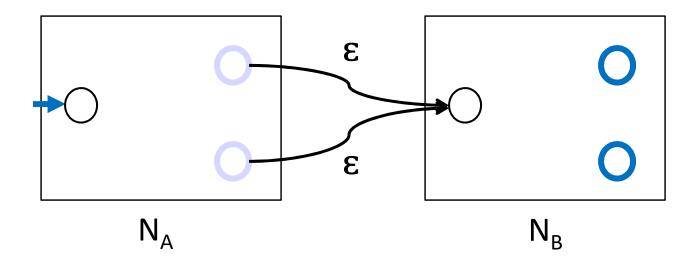




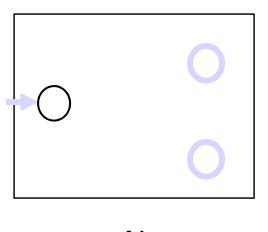
Case (AB):



Case (AB):

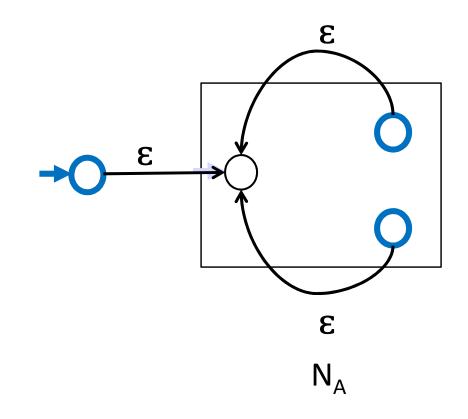


Case A*



 N_A

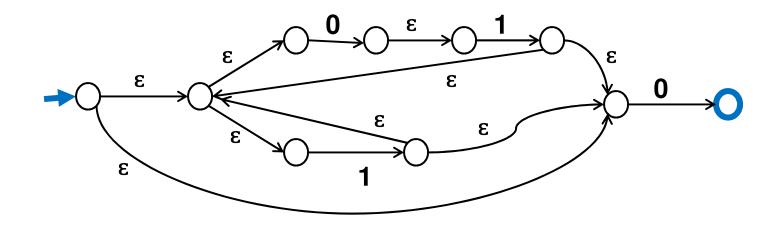
Case A*



Build an NFA for ($01 \cup 1$)*0

Solution

(01 ∪1)*0



Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

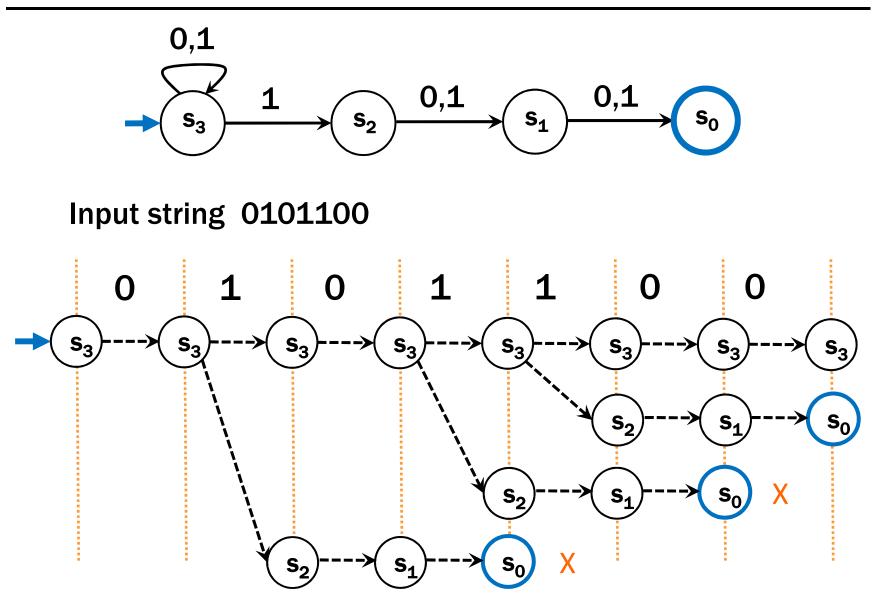
Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

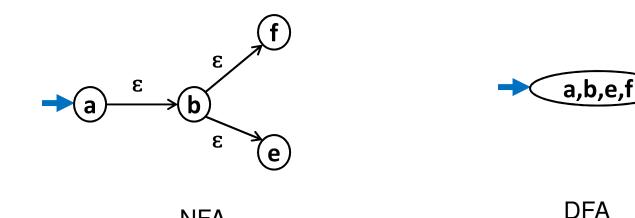
- Proof Idea:
 - The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 - There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Parallel Exploration view of an NFA



New start state for DFA

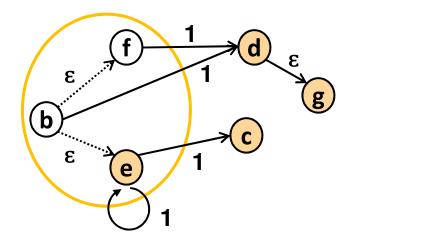
– The set of all states reachable from the start state of the NFA using only edges labeled ϵ



NFA

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

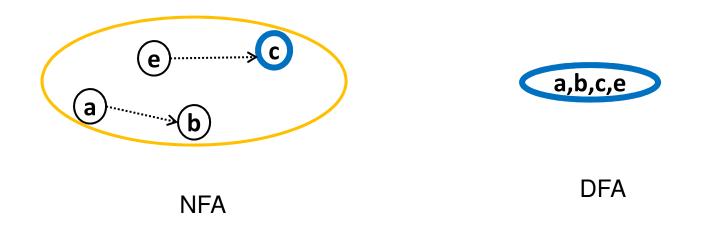
- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - \cdot starting from some state in S, then
 - following one edge labeled by s, and then following some number of edges labeled by ε
- T will be \varnothing if no edges from S labeled s exist



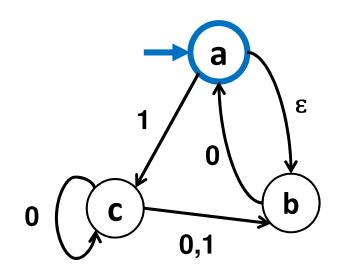
$$b,e,f$$
 1 c,d,e,g

Final states for the DFA

 All states whose set contain some final state of the NFA

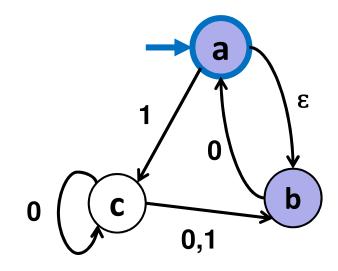


Example: NFA to DFA



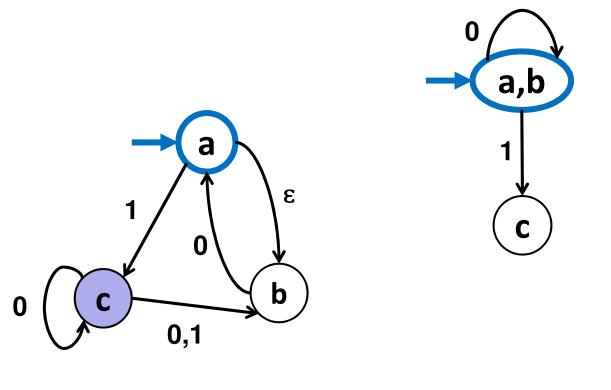
NFA

Example: NFA to DFA



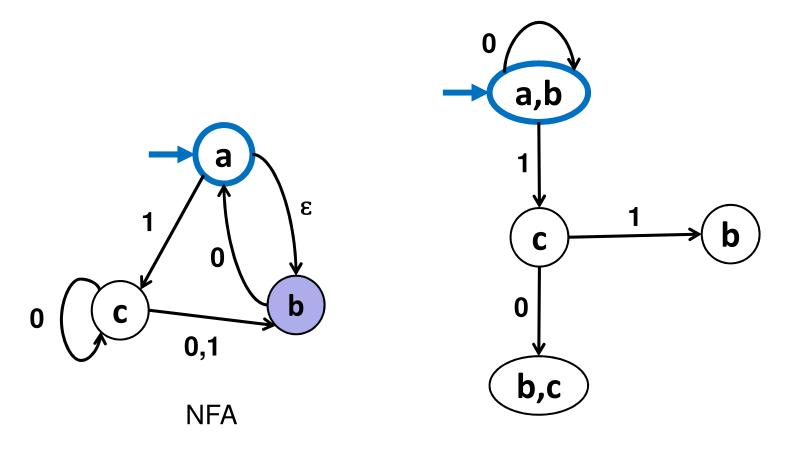
NFA

DFA

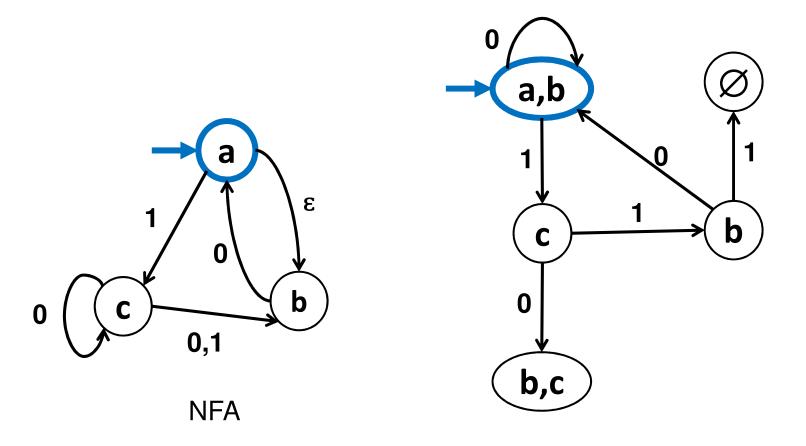


NFA

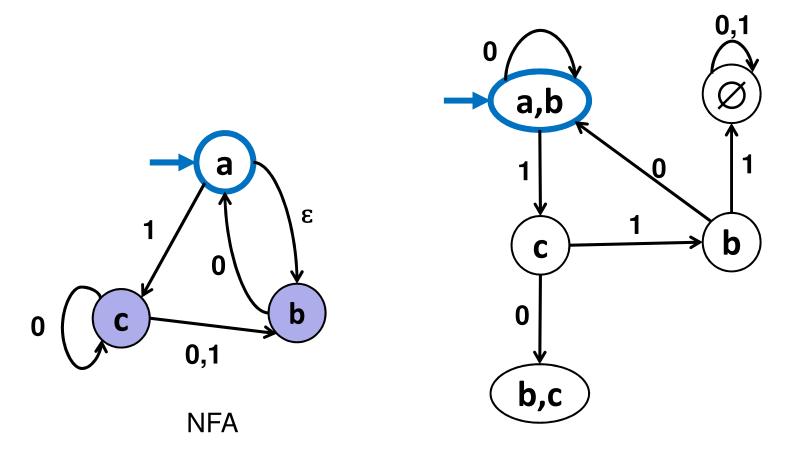
DFA



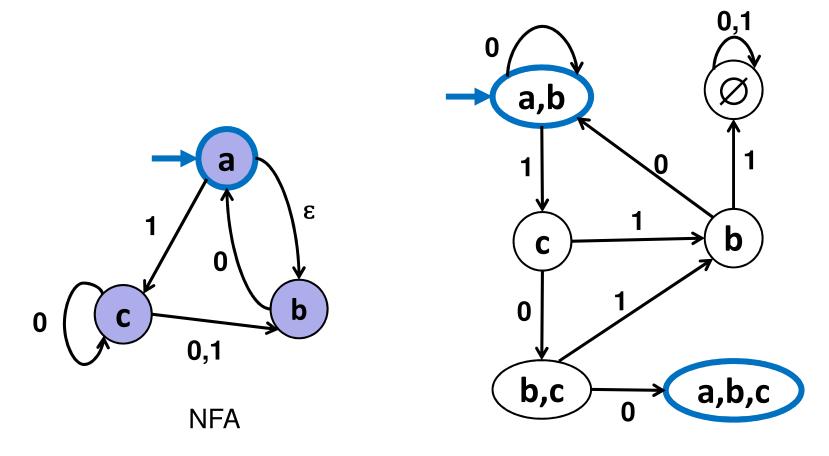
DFA



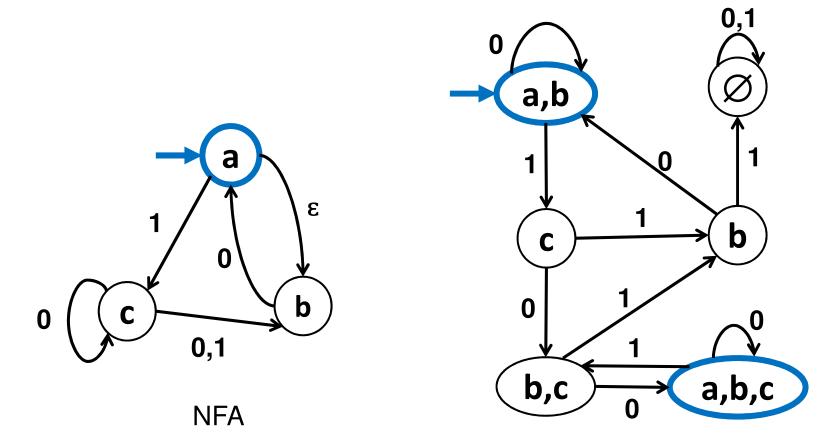
DFA



DFA



DFA



DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - *n*-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the n^{th} char from the end a 1?"
- The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

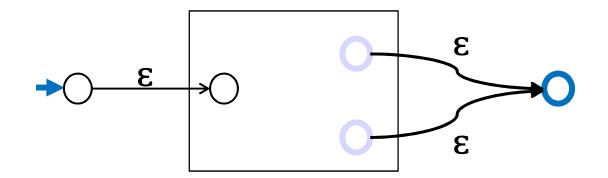
Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but we won't ask you anything about the "only if" direction from DFA/NFA to regular expression. For fun, we sketch the idea.

Generalized NFAs

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 NFAs already have edges labeled ε or *a*
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

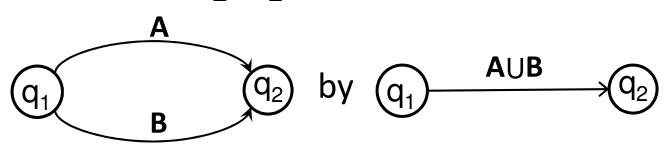
Add new start state and final state



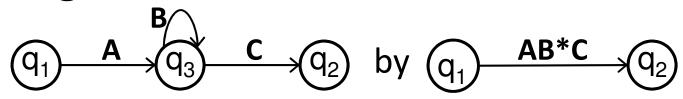
Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A

Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace



 Rule 2: Eliminate non-start/final state q₃ by replacing all

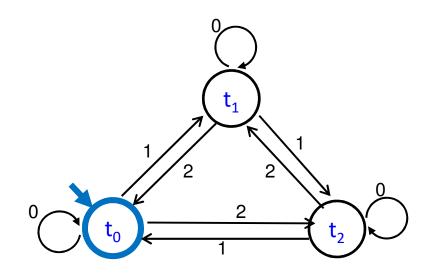


for every pair of states q_1 , q_2 (even if $q_1=q_2$)

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

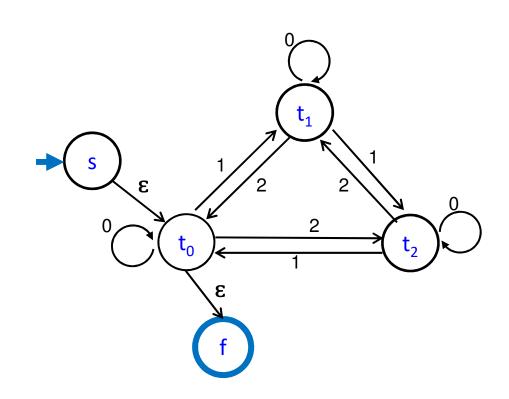
 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0



Splicing out a state t₁

Regular expressions to add to edges

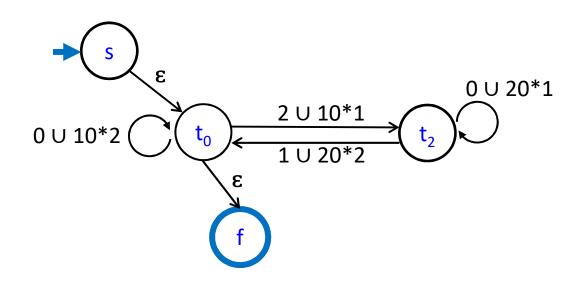
 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$

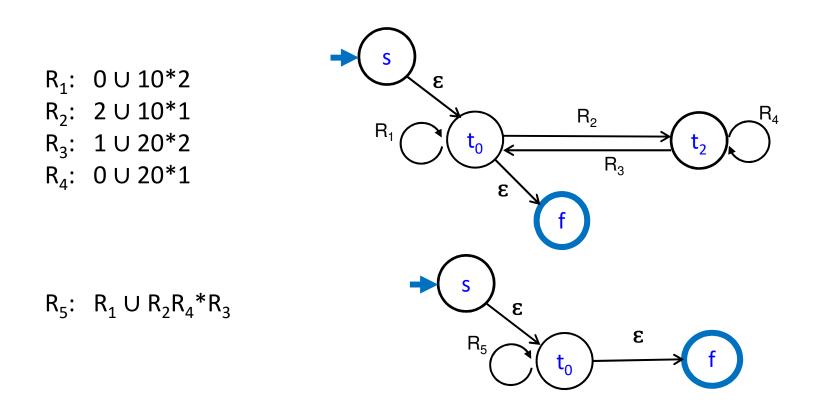


Splicing out a state t₁

Regular expressions to add to edges

 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$





Final regular expression: $R_5^*=$ (0 U 10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20*2))*