CSE 311: Foundations of Computing

Lecture 22: DFAs and Finite State Machines with Output

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

What language does this machine recognize?

What language does this machine recognize?

The set of all binary strings with \# of 1's इ \# of 0's (mod 2) (both are even or both are odd).

Can you think of a simpler description?

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\} \mathbf{w}$ / even number of 2's and mod 3 sum 0

Strings over $\{0,1,2\} \mathbf{w}$ / even number of 2 's and mod 3 sum 0

Strings over $\{0,1,2\} \mathbf{w} /$ even number of 2 's $O R$ mod 3 sum 0 ?

Strings over $\{0,1,2\} \mathbf{w} /$ even number of 2 's OR mod 3 sum 0

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

3 bit shift register "Remember the last three bits"

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The beginning versus the end

Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings
- called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines that with output
- These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, v0.1

Basic transitions on \mathbf{N} (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

Adding output to states: N - Nickel, S - Snickers, B - Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state

