CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &
Context-Free Grammars

s (;a?f:»k\ B
ShHGILE

[Audience looks around]
“What is going on? There must be some context we’re missing”

”

Review: each regular expression is a “pattern

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

Examples

e All binary strings that have an even # of 1’s

* All binary strings that don’t contain 101

Examples

e All binary strings that have an even # of 1’s

e.g., 0%(10%10%*)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 000*)* 0*

Limitations of Regular Expressions

 Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

 The rules involving a variable A are written as
A—wy | wy |-]w

where each w; is a string of variables and terminals —
thatisw, € (VU X)"

How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A->w, | w, || w
— Write this as XAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way that have no variables

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]¢

Example: S—>0S|S1]|¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]¢

The set of all binary palindromes

Example: S—>0S|S1]|¢

0*1*

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

Example: S—>(S)]|SS | ¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—0S81|¢
Example: S—>(S)]|SS | ¢

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|0]|1]2]|3]4
|5]16]1718]9

Generate (2*xx) t+vy

Generate xt+y+*z in two fundamentally different ways

Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|0]|1]2]|3]4
|5]16]7]18]9

Generate (2*xx) t+vy

E = E+E = (E)*+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*Xx)+y

Generate xt+y+*z in two fundamentally different ways

E = E+E = X+E = X+E*E = x+y*E = x+y*z

E = E*E = E+E*E = X+E*E = x+y*E = x+y*z

Parse Trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right

/|\
/|\

Parse tree of 01110 :‘l

S—0S0|1S1|0|1]|¢

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variableis a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

 E-—expression (start symbol)
e T—term F-—factor |-—identifier N- number
E > T|E+T
T — F| F«T
F - (E)|I|N
| —>x|y]|z
N ->0|1]2]|3|4|5|6|7]|8]|9

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long nhames in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —

BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if" "(" expression ")" statement "else™ statement |
"switch™ "(" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while™ " (" expression ")" ";" |
"for™ " (" expression? ":;" expression? ";" expression? ")" statemsnt |
"goto™ identifier ";" |
"continue™ ";" |
"break™ ";" |
"return" expression? ";"
)
block: "{" declaration* statement®* ™"}"
expression:
assignment-expression$
assignment-expression: |
unary-expression
| "e="] U= O MEEET) Ta=T |

Ifllll,l':'" | TI%:TI | Ifl_|_:'fl

| | p— | | ™™g T |

L L p—) | | L) | — T

)

}* conditional-expression

conditional-expression:
":" conditional-expression)?

logical-OR-expression ("?" expression

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

