CSE 311: Foundations of Computing

Lecture 10: Set Operations \& Representation, Modular Arithmetic

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Note: $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P , usually called the "universe" U

Set Operations

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\} \text { Union }
$$

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\} \text { Intersection }
$$

$$
A \backslash B=\{x:(x \in A) \wedge(x \notin B)\} \text { Set Difference }
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
[6] = A U B U C
$\{3\}=A \cap B=A \cap C$
$\{1,2\}=A \backslash B=A \backslash C$

More Set Operations

$$
A \oplus B=\{x:(x \in A) \oplus(x \in B)\} \quad \begin{gathered}
\text { Symmetric } \\
\text { Difference }
\end{gathered}
$$

$\bar{A}=\{x: x \notin A\}=\{x: \neg(x \in A)\}$ (with respect to universe U)

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

Complement

It's Boolean algebra again

- Definition for U based on V

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\}
$$

- Definition for \cap based on \wedge

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\}
$$

- Complement works like \neg

$$
\bar{A}=\{x: \neg(x \in A)\}
$$

De Morgan's Laws

$\overline{A \cup B}=\bar{A} \cap \bar{B}$

$\overline{A \cap B}=\bar{A} \cup \bar{B}$

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$
Remember the definition of subset?

$$
X \subseteq Y \equiv \forall x(x \in X \rightarrow x \in Y)
$$

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$
Remember the definition of subset?

$$
X \subseteq Y \equiv \forall x(x \in X \rightarrow x \in Y)
$$

Proof: Let A and B be arbitrary sets and x be an arbitrary element of $A \cap B$.
Then, by definition of $A \cap B, x \in A$ and $x \in B$. It follows that $x \in A$, as required. \square

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=$?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B$? $A \cap B$?

UNIX/Linux File Permissions

- ls -l

$$
\begin{aligned}
& \text { drwxr-xr-x } \\
& \text {-. . . Documents / } \\
& \text {-r--r-- ... file1 }
\end{aligned}
$$

- Permissions maintained as bit vectors
- Letter means bit is 1
- "-" means bit is 0 .

Bitwise Operations

01101101
$\checkmark 00110111$
01111111
00101010 Java: $\mathbf{z = x \& y}$

- 00001111

00001010
$01101101 \quad$ Java: $\quad \mathbf{z}=\mathbf{x}^{\wedge} \mathbf{y}$
$\oplus 00110111$
01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
        System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.

Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

Check Your Understanding. Which of the following are true?
5|1
25 | 5
5|0
$3 \mid 2$
1 | 5
5 | 25
$0 \mid 5$
2 | 3

Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

Check Your Understanding. Which of the following are true?

5\|1	25\|5	510	3 \| 2
5 \| 1 iff $1=5 k$	25 \| 5 iff $5=25 k$	510 iff $0=5 k$	$3 \mid 2$ iff $2=3 \mathrm{k}$
1\|5	5\|25	0\|5	2 \| 3
1 \| 5 iff $5=1 \mathrm{k}$	5 \| 25 iff $25=5 k$	0 \| 5 iff $5=0 \mathrm{k}$	2 \| 3 iff $3=2 \mathrm{k}$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$.
Not quite the same as $\mathbf{a} \%$ d.

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $\mathbf{a} \%$ d.

Arithmetic, mod 7

$$
\begin{aligned}
& a+{ }_{7} b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m "

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
$-1 \equiv 19(\bmod 5)$
$y \equiv 2(\bmod 7)$

Modular Arithmetic

Definition: "a is congruent to b modulo m "

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?

$$
x \equiv 0(\bmod 2)
$$

This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 \mathrm{k}$ for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.
Suppose that $a \equiv b(\bmod m)$.

Suppose that $a \bmod m=b \bmod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \bmod m=(b+k m) \bmod m=b \bmod m
$$

Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$ $=m(q-s)$ since $a \bmod m=b \bmod m$
Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

