CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory

Last class: Inference Rules for Quantifiers

* in the domain of P. No other name in P depends on a
$\operatorname{Elim} \quad \exists \mathrm{x} P(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c

```
** c is a NEW name.
```

List all dependencies for c.

Last class: Even and Odd

```
Even(x)\equiv\existsy (x=2y)
Odd(x) \equiv\existsy (x=2y+1)

Prove: "The square of every even number is even." Formal proof of: \(\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)\)
1. Let a be an arbitrary integer
2.1 Even(a) Assumption
\(2.2 \exists y(a=2 y) \quad\) Definition of Even
\(2.3 \mathbf{a}=2 \mathbf{b} \quad\) Elim \(\exists\) : \(\mathbf{b}\) special depends on \(\mathbf{a}\)
\(2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad\) Algebra
\(2.5 \exists y\left(a^{2}=2 y\right) \quad\) Intro \(\exists\) rule
2.6 Even \(\left(\mathrm{a}^{2}\right) \quad\) Definition of Even
2. Even \((\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right) \quad\) Direct proof rule
3. \(\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad\) Intro \(\forall: 1,2\)

\section*{English Proof: Even and Odd}
```

Even(x)\equiv\existsy (x=2y)
Odd(x) \equiv\existsy (x=2y+1)
Domain: Integers

```

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.

Then, by definition, \(a=2 b\) for some integer b (depending on a).

Squaring both sides, we get \(a^{2}=4 b^{2}=2\left(2 b^{2}\right)\).

Since \(2 b^{2}\) is an integer, by definition, \(a^{2}\) is even.

Since a was arbitrary, it follows that the square of every even number is even.
1. Let a be an arbitrary integer 2.1 Even(a) Assumption
\(2.2 \exists y(a=2 y) \quad\) Definition
\(2.3 \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}\) special depends on a
\(2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)\) Algebra
\(2.5 \exists y\left(a^{2}=2 y\right)\)
2.6 Even \(\left(\mathrm{a}^{2}\right) \quad\) Definition
2. Even \((\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)\)
3. \(\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)\)

\section*{Predicate Definitions \\ Even and Odd}

Prove "The square of every odd integer is odd."

\section*{Even and Odd}
\begin{tabular}{|l|}
\hline Predicate Definitions \\
\hline Even \((\mathrm{x}) \equiv \exists y(x=2 y)\) \\
\(\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)\) \\
\hline
\end{tabular}

\section*{Prove "The square of every odd integer is odd."}

Proof: Let b be an arbitrary odd integer.
Then, \(b=2 c+1\) for some integer \(c\) (depending on \(b\) ).
Therefore, \(b^{2}=(2 c+1)^{2}=4 c^{2}+4 c+1=2\left(2 c^{2}+2 c\right)+1\).
Since \(2 c^{2}+2 c\) is an integer, \(b^{2}\) is odd. Since \(b\) was arbitrary, the square of every odd integer is odd.

\section*{Proof Strategies: Counterexamples}

To disprove \(\forall x \mathrm{P}(\mathrm{x})\) prove \(\exists \neg \mathrm{P}(\mathrm{x})\) :
- Works by de Morgan's Law: \(\neg \forall x P(x) \equiv \exists x \neg P(x)\)
- All we need to do that is find an \(x\) for which \(P(x)\) is false
- This example is called a counterexample to \(\forall \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x})\).
e.g. Disprove "Every prime number is odd"

\section*{Proof Strategies: Proof by Contrapositive}

If we assume \(\neg q\) and derive \(\neg p\), then we have proven \(\neg \mathrm{q} \rightarrow \neg \mathrm{p}\), which is equivalent to proving \(\mathrm{p} \rightarrow \mathrm{q}\).
1.1. \(\neg q \quad\) Assumption
1.3. \(\neg p\)
1. \(\neg q \rightarrow \neg p \quad\) Direct Proof Rule
2. \(p \rightarrow q \quad\) Contrapositive: 1

\section*{Proof by Contradiction: One way to prove \(\neg \mathrm{p}\)}

If we assume \(p\) and derive \(F\) (a contradiction), then we have proven \(\neg\) p.
1.1. \(p\) Assumption
1.3. F
1. \(p \rightarrow \mathrm{~F} \quad\) Direct Proof rule
2. \(\neg p \vee \mathrm{~F} \quad\) Law of Implication: 1
3. \(\neg p \quad\) Identity: 2

\section*{Even and Odd}
\begin{tabular}{|l|}
\hline Predicate Definitions \\
\hline \(\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)\) \\
\(\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)\) \\
\hline
\end{tabular}

Prove: "No integer is both even and odd."
English proof: \(\neg \exists x(E v e n(x) \wedge O d d(x))\) \(\equiv \forall x \neg(\) Even \((x) \wedge O d d(x))\)

\section*{Even and Odd}
\begin{tabular}{|l|}
\hline Predicate Definitions \\
\hline \(\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)\) \\
\(\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)\) \\
\hline
\end{tabular}

Prove: "No integer is both even and odd."
\[
\text { English proof: } \begin{aligned}
& \neg \exists x(E v e n(x) \wedge \operatorname{Odd}(\mathrm{x})) \\
& \equiv \forall x \neg(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x}))
\end{aligned}
\]

Proof: We work by contradiction. Let x be an arbitrary integer and suppose that it is both even and odd.
Then \(x=2 a\) for some integer \(a\) and \(x=2 b+1\) for some integer \(b\). Therefore \(2 a=2 b+1\) and hence \(a=b+1 / 2\).
But two integers cannot differ by \(1 / 2\) so this is a contradiction. So, no integer is both even and odd. ■

\section*{Rational Numbers}
- A real number \(x\) is rational iff there exist integers \(p\) and \(q\) with \(q \neq 0\) such that \(x=p / q\).

Rational \((x) \equiv \exists \mathrm{p} \exists \mathrm{q}((\mathrm{x}=\mathrm{p} / \mathrm{q}) \wedge \operatorname{Integer}(\mathrm{p}) \wedge \operatorname{Integer}(\mathrm{q}) \wedge \mathrm{q} \neq 0)\)

\section*{Rationality}

\section*{Predicate Definitions}

Rational \((\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))\)
Prove: "If \(x\) and \(y\) are rational then \(x y\) is rational."

\section*{Rationality}
\begin{tabular}{|l|}
\hline Predicate Definitions \\
\hline Rational \((\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))\) \\
\hline
\end{tabular}

Prove: "If \(x\) and \(y\) are rational then \(x y\) is rational."

Proof: Let \(x\) and \(y\) be rational numbers. Then, \(x=a / b\) for some integers \(a, b\), where \(b \neq 0\), and \(y=c / d\) for some integers \(\mathrm{c}, \mathrm{d}\), where \(\mathrm{d} \neq 0\).
Multiplying, we get that \(x y=(a c) /(b d)\).
Since \(b\) and \(d\) are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

\section*{Proofs}
- Formal proofs follow simple well-defined rules and should be easy to check
- In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- Easily checkable in principle
- Simple proof strategies already do a lot
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

\section*{Set Theory}

Sets are collections of objects called elements.

Write \(a \in B\) to say that \(a\) is an element of set \(B\), and \(a \notin B\) to say that it is not.
\[
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
\]

\section*{Some Common Sets}
\(\mathbb{N}\) is the set of Natural Numbers; \(\mathbb{N}=\{0,1,2, \ldots\}\)
\(\mathbb{Z}\) is the set of Integers; \(\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}\)
\(\mathbb{Q}\) is the set of Rational Numbers; e.g. \(1 / 2,-17,32 / 48\)
\(\mathbb{R}\) is the set of Real Numbers; e.g. \(1,-17,32 / 48, \pi, \sqrt{2}\)
[ \(\mathbf{n}\) ] is the set \(\{\mathbf{1}, \mathbf{2}, \ldots, \mathrm{n}\}\) when \(\mathbf{n}\) is a natural number
\(\}=\varnothing\) is the empty set; the only set with no elements

\section*{Sets can be elements of other sets}
```

For example
$A=\{\{1\},\{2\},\{1,2\}, \varnothing\}$
$B=\{1,2\}$

```

Then \(B \in A\).

\section*{Definitions}
- \(A\) and \(B\) are equal if they have the same elements
\[
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
\]
- \(A\) is a subset of \(B\) if every element of \(A\) is also in \(B\)
\[
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
\]
- Note: \((A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)\)

\section*{Definition: Equality}
\(A\) and \(B\) are equal if they have the same elements
\[
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
\]
\[
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
\]

Which sets are equal to each other?

\section*{Definition: Subset}
\(A\) is a subset of \(B\) if every element of \(A\) is also in \(B\)
\[
\begin{gathered}
A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B) \\
\qquad \begin{array}{l}
A=\{1,2,3\} \\
B=\{3,4,5\} \\
C=\{3,4\}
\end{array}
\end{gathered}
\]
\begin{tabular}{|ll|}
\hline & QUESTIONS \\
\(\varnothing \subseteq A ?\) & \\
\(A \subseteq B ?\) & \\
\(C \subseteq B ?\) & \\
\hline
\end{tabular}

\section*{Building Sets from Predicates}
\(S=\) the set of all* \(x\) for which \(P(x)\) is true
\[
S=\{x: P(x)\}
\]
\(S=\) the set of all \(x\) in \(A\) for which \(P(x)\) is true
\[
S=\{x \in A: P(x)\}
\]
*in the domain of P , usually called the "universe" U

\section*{Set Operations}
\[
A \cup B=\{x:(x \in A) \vee(x \in B)\} \text { Union }
\]
\[
A \cap B=\{x:(x \in A) \wedge(x \in B)\} \text { Intersection }
\]
\[
A \backslash B=\{x:(x \in A) \wedge(x \notin B)\} \text { Set Difference }
\]
\[
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
\]

> Using \(A, B, C\) and set operations, make... \([6]=\) \(\{3\}=\) \(\{1,2\}=\)

\section*{More Set Operations}
\[
A \oplus B=\{x:(x \in A) \oplus(x \in B)\} \quad \begin{gathered}
\text { Symmetric } \\
\text { Difference }
\end{gathered}
\]
\(\bar{A}=\{x: x \notin A\}\)
(with respect to universe U )
\[
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
\]
\[
\begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
\]

It's Boolean algebra again
- Definition for \(\cup\) based on \(\vee\)
- Definition for \(\cap\) based on \(\wedge\)
- Complement works like \(\neg\)

\section*{De Morgan's Laws}

\section*{\(\overline{A \cup B}=\bar{A} \cap \bar{B}\)}

\section*{\(\overline{A \cap B}=\bar{A} \cup \bar{B}\)}
\[
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
\]

\section*{Distributive Laws}
\[
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
\]


\section*{Distributive Laws}
\[
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
\]


\section*{Power Set}
- Power Set of a set \(A=\) set of all subsets of \(A\)
\[
\mathcal{P}(A)=\{B: B \subseteq A\}
\]
- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\(\mathcal{P}\) (Days) \(=\) ?
\(\mathcal{P}(\varnothing)=\) ?

\section*{Power Set}
- Power Set of a set \(A=\) set of all subsets of \(A\)
\[
\mathcal{P}(A)=\{B: B \subseteq A\}
\]
- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\(\mathcal{P}\) (Days) \(=\{\{\mathrm{M}, \mathrm{W}, \mathrm{F}\},\{\mathrm{M}, \mathrm{W}\},\{\mathrm{M}, \mathrm{F}\},\{\mathrm{W}, \mathrm{F}\},\{\mathrm{M}\},\{\mathrm{W}\},\{\mathrm{F}\}, \varnothing\}\)
\(\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing\)

\section*{Cartesian Product}

\section*{\(A \times B=\{(a, b): a \in A, b \in B\}\)}
\(\mathbb{R} \times \mathbb{R}\) is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
\(\mathbb{Z} \times \mathbb{Z}\) is "the set of all pairs of integers"
If \(A=\{1,2\}, B=\{a, b, c\}\), then \(A \times B=\{(1, a),(1, b),(1, c)\), \((2, a),(2, b),(2, c)\}\).
\(\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathrm{F}\}=\varnothing\)

\section*{Representing Sets Using Bits}
- Suppose universe \(U\) is \(\{1,2, \ldots, n\}\)
- Can represent set \(B \subseteq U\) as a vector of bits:
\[
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
\]
- Called the characteristic vector of set B
- Given characteristic vectors for \(A\) and \(B\)
- What is characteristic vector for \(A \cup B\) ? \(A \cap B\) ?

\section*{UNIX/Linux File Permissions}
- ls -l
\[
\begin{aligned}
& \text { drwxr-xr-x } \\
& \text {-. . . Documents / } \\
& \text {-r--r-- ... file1 }
\end{aligned}
\]
- Permissions maintained as bit vectors
- Letter means bit is 1
- "-" means bit is 0 .

\section*{Bitwise Operations}

01101101
\(\checkmark 00110111\)
01111111
00101010 Java: \(\mathbf{z = x \& y}\)
- 00001111

00001010
\(01101101 \quad\) Java: \(\quad \mathbf{z}=\mathbf{x}^{\wedge} \mathbf{y}\)
\(\oplus 00110111\)
01011010

\section*{A Useful Identity}
- If \(x\) and \(y\) are bits: \((x \oplus y) \oplus y=\) ?
- What if \(x\) and \(y\) are bit-vectors?

\section*{Private Key Cryptography}
- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.


\section*{One-Time Pad}
- Alice and Bob privately share random n-bit vector \(K\)
- Eve does not know K
- Later, Alice has n-bit message \(m\) to send to Bob
- Alice computes \(\mathbf{C}=\mathrm{m} \oplus \mathrm{K}\)
- Alice sends C to Bob
- Bob computes \(m=C \oplus K\) which is \((m \oplus K) \oplus K\)
- Eve cannot figure out \(m\) from \(C\) unless she can guess K


\section*{Russell's Paradox}
\[
S=\{x: x \notin x\}
\]

Suppose for contradiction that \(S \in S\)...

\section*{Russell's Paradox}
\[
S=\{x: x \notin x\}
\]

Suppose for contradiction that \(S \in S\). Then, by definition of \(S, S \notin S\), but that’s a contradiction.

Suppose for contradiction that \(S \notin S\). Then, by definition of the set \(S, S \in S\), but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."```

