### **CSE 311:** Foundations of Computing

### Lecture 9: English Proofs, Strategies, Set Theory



### Last class: Inference Rules for Quantifiers

$$\begin{array}{c|c} P(c) \text{ for some c} \\ \hline \square \text{Intro } \exists x P(x) \end{array} \xrightarrow[Elim \forall]{} \forall x P(x) \\ \hline \therefore \exists x P(x) \end{array} \xrightarrow[Elim \forall]{} \therefore P(a) \text{ for any } a \end{array}$$

Intro 
$$\forall$$
Let a be arbitrary\*"...P(a) $\exists x P(x)$  $\therefore \quad \forall x P(x)$  $\exists r P(x)$  $\therefore \quad \forall x P(x)$  $\therefore P(c)$  for some special\*\* c\* in the domain of P. No other  
name in P depends on a\*\* c is a NEW name.  
List all dependencies for c.

Prove: "The square of every even number is even." Formal proof of:  $\forall x (Even(x) \rightarrow Even(x^2))$ 

### 1. Let a be an arbitrary integer

- **2.1** Even(a)
- **2.2**  $\exists y (a = 2y)$
- 2.3 a = 2b
- **2.4**  $a^2 = 4b^2 = 2(2b^2)$  Algebra
- **2.5**  $\exists y (a^2 = 2y)$

**2.** Even(a)  $\rightarrow$  Even(a<sup>2</sup>) Direct proof rule

**3.**  $\forall x (Even(x) \rightarrow Even(x^2))$  Intro  $\forall : 1, 2$ 

Assumption **Definition of Even** 

- Elim  $\exists$ : **b** special depends on **a**
- Intro 🗄 rule
- **2.6** Even(a<sup>2</sup>) Definition of Even

Prove "The square of every even integer is even."

| Proof: Let <b>a</b> be an arbitrary 1<br>even integer.                                         | . Le<br>2.1 | et <mark>a</mark> be an arbit<br>Even( <mark>a</mark> )       | t <b>rary integer</b><br>Assumption                |
|------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------|----------------------------------------------------|
| Then, by definition, a = 2b<br>for some integer b<br>(depending on a).                         | 2.2<br>2.3  | ∃y (a = 2y)<br>a = 2b                                         | Definition<br><b>b</b> special depends on <b>a</b> |
| Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$ .                                           | 2.4         | <b>a<sup>2</sup></b> = 4 <b>b</b> <sup>2</sup> = 2(2 <b>k</b> | <sup>2</sup> ) Algebra                             |
| Since 2 <sup>b<sup>2</sup></sup> is an integer, by <b>definition</b> , a <sup>2</sup> is even. | 2.5<br>2.6  | ∃y ( <b>a²</b> = 2y)<br>Even( <b>a²</b> )                     | Definition                                         |
| Since a was arbitrary, it 2<br>follows that the square of 3<br>every even number is even.      | . Ev<br>∀>  | en( <b>a</b> )→Even( <b>a</b><br>‹ (Even(x)→Eve               | <mark>²</mark> )<br>en(x²))                        |

Predicate Definitions Even(x)  $\equiv \exists y \ (x = 2y)$ Odd(x)  $\equiv \exists y \ (x = 2y + 1)$ 



**Prove "The square of every odd integer is odd."** 

Predicate Definitions Even(x)  $\equiv \exists y \ (x = 2y)$ Odd(x)  $\equiv \exists y \ (x = 2y + 1)$ 

**Prove "The square of every odd integer is odd."** 

**Proof:** Let b be an arbitrary odd integer. Then, b = 2c+1 for some integer c (depending on b). Therefore,  $b^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1$ . Since  $2c^2+2c$  is an integer,  $b^2$  is odd. Since b was arbitrary, the square of every odd integer is odd. To disprove  $\forall x P(x)$  prove  $\exists \neg P(x)$ :

- Works by de Morgan's Law:  $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x for which P(x) is false
- This example is called a *counterexample* to  $\forall x P(x)$ .

e.g. Disprove "Every prime number is odd"

### **Proof Strategies: Proof by Contrapositive**

If we assume  $\neg q$  and derive  $\neg p$ , then we have proven  $\neg q \rightarrow \neg p$ , which is equivalent to proving  $p \rightarrow q$ .



If we assume p and derive F (a contradiction), then we have proven  $\neg p$ .



**Even and Odd** 

Predicate Definitions Even(x)  $\equiv \exists y \ (x = 2y)$ Odd(x)  $\equiv \exists y \ (x = 2y + 1)$ 

Domain of Discourse Integers

## Prove: "No integer is both even and odd." English proof: $\neg \exists x (Even(x) \land Odd(x))$ $\equiv \forall x \neg (Even(x) \land Odd(x))$

Predicate Definitions Even(x)  $\equiv \exists y \ (x = 2y)$ Odd(x)  $\equiv \exists y \ (x = 2y + 1)$ 

# Prove: "No integer is both even and odd." English proof: $\neg \exists x (Even(x) \land Odd(x))$ $\equiv \forall x \neg (Even(x) \land Odd(x))$

**Proof:** We work by contradiction. Let x be an arbitrary integer and suppose that it is both even and odd. Then x=2a for some integer a and x=2b+1 for some integer b. Therefore 2a=2b+1 and hence  $a=b+\frac{1}{2}$ . But two integers cannot differ by  $\frac{1}{2}$  so this is a contradiction. So, no integer is both even and odd.  A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) =  $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$ 

## Rationality

#### **Predicate Definitions**

 $\mathsf{Rational}(\mathsf{x}) \equiv \exists p \; \exists q \; ((x = p/q) \land \mathsf{Integer}(p) \land \mathsf{Integer}(q) \land (q \neq 0))$ 

**Prove: "If x and y are rational then xy is rational."** 

## Rationality

**Predicate Definitions** 

Rational(x) =  $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$ 

Prove: "If x and y are rational then xy is rational."

**Proof:** Let x and y be rational numbers. Then, x = a/b for some integers a, b, where  $b\neq 0$ , and y = c/d for some integers c,d, where  $d\neq 0$ .

Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

 Formal proofs follow simple well-defined rules and should be easy to check

– In the same way that code should be easy to execute

- English proofs correspond to those rules but are designed to be easier for humans to read
  - Easily checkable in principle
- Simple proof strategies already do a lot
  - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)



Sets are collections of objects called elements.

Write  $a \in B$  to say that a is an element of set B, and  $a \notin B$  to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

N is the set of Natural Numbers;  $\mathbb{N} = \{0, 1, 2, ...\}$   $\mathbb{Z}$  is the set of Integers;  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$   $\mathbb{Q}$  is the set of Rational Numbers; e.g. ½, -17, 32/48  $\mathbb{R}$  is the set of Real Numbers; e.g. 1, -17, 32/48,  $\pi,\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number {} =  $\emptyset$  is the empty set; the *only* set with no elements For example  $A = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$   $B = \{1,2\}$ Then  $B \in A$ . • A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

• Note: 
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$
$$B = \{3, 4, 5\}$$
$$C = \{3, 4\}$$
$$D = \{4, 3, 3\}$$
$$E = \{3, 4, 3\}$$
$$F = \{4, \{3\}\}$$

Which sets are equal to each other?

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

|                             | <b>QUESTIONS</b> |  |
|-----------------------------|------------------|--|
| $\varnothing \subseteq A$ ? |                  |  |
| $A \subseteq B$ ?           |                  |  |
| C ⊆ B?                      |                  |  |
|                             |                  |  |

S = the set of all<sup>\*</sup> x for which P(x) is true

$$S = \{x : P(x)\}$$

S = the set of all x in A for which P(x) is true

$$S = \{x \in A : P(x)\}$$

\*in the domain of P, usually called the "universe" U

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

| A = {1, 2, 3}<br>B = {3, 5, 6} | QUESTIONS<br>Using A, B, C and set operations, make |
|--------------------------------|-----------------------------------------------------|
| C = {3, 4}                     | [6] =                                               |
|                                | {3} =                                               |
|                                | {1,2} =                                             |

### **More Set Operations**

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$
(with respect to universe U)

Complement

A = 
$$\{1, 2, 3\}$$
  
B =  $\{1, 2, 4, 6\}$   
Universe:  
U =  $\{1, 2, 3, 4, 5, 6\}$ 

 $A \bigoplus B = \{3, 4, 6\}$  $\overline{A} = \{4, 5, 6\}$ 

## It's Boolean algebra again

- Definition for  $\cup$  based on  $\vee$ 

- Definition for  $\cap$  based on  $\wedge$ 

• Complement works like  $\neg$ 

**De Morgan's Laws** 

# $\overline{A \cup B} = \overline{A} \cap \overline{B}$

# $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof technique: To show C = D show  $x \in C \rightarrow x \in D$  and  $x \in D \rightarrow x \in C$ 









Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$ 

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$ 

 $\mathcal{P}(\varnothing) = \{\varnothing\} \neq \varnothing$ 

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$  is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$  is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A  $\times$  B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$ 

- Suppose universe U is  $\{1, 2, ..., n\}$
- Can represent set  $B \subseteq U$  as a vector of bits:

 $b_1b_2 \dots b_n$  where  $b_i = 1$  when  $i \in B$  $b_i = 0$  when  $i \notin B$ 

- Called the *characteristic vector* of set B

• Given characteristic vectors for A and B

– What is characteristic vector for  $A \cup B$ ?  $A \cap B$ ?

• 1s -1

drwxr-xr-x ... Documents/
-rw-r--r-- ... file1

- Permissions maintained as bit vectors
  - Letter means bit is 1
  - "–" means bit is 0.



- If x and y are bits:  $(x \oplus y) \oplus y = ?$
- What if x and y are bit-vectors?

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.



### **One-Time Pad**

- Alice and Bob privately share random n-bit vector K
  - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
  - Alice computes  $C = m \oplus K$
  - Alice sends C to Bob
  - Bob computes  $m = C \oplus K$  which is  $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K



**Russell's Paradox** 

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that  $S \in S$ ...

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that  $S \in S$ . Then, by definition of  $S, S \notin S$ , but that's a contradiction.

Suppose for contradiction that  $S \notin S$ . Then, by definition of the set  $S, S \in S$ , but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."