
CSE 311: Foundations of Computing

Lecture 9:  English Proofs, Strategies, Set Theory



Last class: Inference Rules for Quantifiers

∀x P(x)        
∴ P(a) for any a

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

* in the domain of P.  No other   

name in P depends on a 
** c is a NEW name. 

List all dependencies for c.

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)
Intro ∀

∃x P(x)
∴ P(c) for some special** c

Elim ∃



Last class: Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5   ∃y (a2 = 2y) Intro ∃ rule

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) ≡ ∃y  (x=2y)     

Odd(x)  ≡ ∃y  (x=2y+1)

Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2   ∃y (a = 2y) Definition

2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))

Proof: Let a be an arbitrary 

even integer.  

Then, by definition, a = 2b

for some integer b

(depending on a).

Squaring both sides, we get 

a2 = 4b2 = 2(2b2). 

Since 2b2 is an integer, by 

definition, a2 is even.

Since a was arbitrary, it 

follows that the square of 

every even number is even.



Even and Odd

Prove “The square of every odd integer is odd.”

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Even and Odd

Prove “The square of every odd integer is odd.”

Proof: Let b be an arbitrary odd integer.

Then, b = 2c+1 for some integer c (depending on b).

Therefore, b2 = (2c+1)2 =  4c2 + 4c + 1 = 2(2c2 + 2c) + 1.

Since 2c2+2c is an integer, b2 is odd.   Since b was 

arbitrary, the square of every odd integer is odd.      

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Proof Strategies: Counterexamples

To disprove ∀x P(x) prove  ∃¬P(x) :

• Works by de Morgan’s Law: ¬∀� � � ≡ ∃�¬�(�)

• All we need to do that is find an � for which �(�) is 

false

• This example is called a counterexample to �� �(�).

e.g. Disprove “Every prime number is odd”



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  

¬q → ¬p, which is equivalent to proving p → q.

1.1. �� Assumption

...

1.3. ��

1.    �� � �� Direct Proof Rule

2.     � � � Contrapositive: 1                       



Proof by Contradiction:  One way to prove ¬p

If we assume p and derive F (a contradiction), then 

we have proven ¬p.

1.1.  � Assumption

...

1.3.  �

1.   � � � Direct Proof rule

2.   �� � � Law of Implication: 1

3.   �� Identity: 2



Even and Odd

Prove: “No integer is both even and odd.”

English proof: ¬ ∃x (Even(x)∧Odd(x)) 

≡∀x ¬(Even(x)∧Odd(x))

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”

English proof: ¬ ∃x (Even(x)∧Odd(x)) 

≡∀x ¬(Even(x)∧Odd(x))

Proof: We work by contradiction. Let x be an arbitrary 

integer and suppose that it is both even and odd.   

Then x=2a for some integer a and x=2b+1 for some 

integer b.   Therefore 2a=2b+1 and hence a=b+½.

But two integers cannot differ by ½ so this is a 

contradiction.  So, no integer is both even and odd.

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Rational Numbers

• A real number x is rational iff there exist integers p

and q with q≠0 such that x=p/q.

Rational(x) ≡ ∃p ∃q  ((x=p/q) ∧ Integer(p) ∧ Integer(q) ∧ q≠0)    

Real Numbers

Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Rational(x) ≡ ∃� ∃� ( � = �/� ∧ Integer � ∧ Integer � ∧ � ≠ 0 )

Predicate Definitions

Real Numbers

Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Proof: Let x and y be rational numbers.  Then, x = a/b 

for some integers a, b, where b≠0, and y = c/d for some 

integers c,d, where d≠0. 

Multiplying, we get that xy = (ac)/(bd).  

Since b and d are both non-zero, so is bd; furthermore, 

ac and bd are integers.  It follows that xy is rational, by 

definition of rational.

Real Numbers

Domain of Discourse

Rational(x) ≡ ∃� ∃� ( � = �/� ∧ Integer � ∧ Integer � ∧ � ≠ 0 )

Predicate Definitions



Proofs

• Formal proofs follow simple well-defined rules and 

should be easy to check

– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 

designed to be easier for humans to read

– Easily checkable in principle

• Simple proof strategies already do a lot

– Later we will cover a specific strategy that applies to 

loops and recursion (mathematical induction)



Set Theory

Sets are collections of objects called elements. 

Write a ∈ B to say that a is an element of set B,

and a ∉ B to say that it is not.

Some simple examples

A = {1}

B = {1, 3, 2}

C = {☐, 1}

D = {{17}, 17}

E = {1, 2, 7, cat, dog, ∅, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
&

[n] is the set {1, 2, …, n} when n is a natural number

{} = ∅ is the empty set; the only set with no elements



Sets can be elements of other sets

For example

A = {{1},{2},{1,2},∅}
B = {1,2}

Then B ∈ A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B  ≡ ∀ x (x ∈ A ↔ x ∈ B)

A ⊆ B ≡ ∀ x (x ∈ A → x ∈ B)



Definition: Equality

A and B are equal if they have the same elements

A = B  ≡ ∀ x (x ∈ A ↔ x ∈ B)

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

D = {4, 3, 3}

E = {3, 4, 3}

F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A ⊆ B ≡ ∀ x (x ∈ A → x ∈ B)

A = {1, 2, 3}

B = {3, 4, 5}

C = {3, 4}

QUESTIONS

∅ ⊆ A?

A ⊆ B?

C ⊆ B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x ∈ A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

' ∪ ) = { � ∶ � ∈ ' ∨ � ∈ ) }

' ∩ ) = { � ∶ � ∈ ' ∧ � ∈ ) }

' \ ) = { � ∶ � ∈ ' ∧ � ∉ ) }

Union

Intersection

Set Difference

A = {1, 2, 3}

B = {3, 5, 6} 

C = {3, 4}

QUESTIONS

Using A, B, C and set operations, make…

[6] =

{3} =

{1,2} =



More Set Operations

' ⊕ ) = { � ∶ � ∈ ' ⊕ � ∈ ) }

' 1 =  � ∶ � ∉ '  
(with respect to universe U)                   

Symmetric

Difference

Complement

A = {1, 2, 3}

B = {1, 2, 4, 6} 

Universe:

U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}

21 = {4,5,6}



It’s Boolean algebra again

• Definition for ∪ based on ∨

• Definition for ∩ based on ∧

• Complement works like ¬



De Morgan’s Laws

Proof technique:

To show C = D show

x ∈ C → x ∈ D and

x ∈ D → x ∈ C



Distributive Laws

' ∩ ) ∪ 3 = ' ∩ ) ∪ ' ∩ 3

' ∪ ) ∩ 3 = ' ∪ ) ∩ ' ∪ 3

C

A B

C

A B



Distributive Laws

' ∩ ) ∪ 3 = ' ∩ ) ∪ ' ∩ 3

' ∪ ) ∩ 3 = ' ∪ ) ∩ ' ∪ 3

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 

of days in a week you could ask a question in class

    4(Days)=?

4(�)=?

4 ' = { ) ∶ ) ⊆ ' }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 

of days in a week you could ask a question in class

    4(Days)= 7, 9, : , 7, 9 , 7, : , 9, : , 7 , 9 , : ,�

4(�)={�} ≠ �

4 ' = { ) ∶ ) ⊆ ' }



Cartesian Product

ℝ ×  ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ ×  ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),

(2,a), (2,b), (2,c)}.

< × ∅ ={(>, ?) ∶ > ∈ < ∧  ? ∈ ∅} = {(>, ?) ∶ > ∈ <  ∧  �}  =  ∅



Representing Sets Using Bits

• Suppose universe @ is {1,2, … , B}

• Can represent set ) ⊆ @ as a vector of bits: 

CDCE … CF where CG = 1 when H ∈ )

CG = 0 when H ∉ )

– Called the characteristic vector of set B

• Given characteristic vectors for ' and )

– What is characteristic vector for ' ∪ )?  ' ∩ )?



UNIX/Linux File Permissions

• ls –l

drwxr-xr-x ... Documents/

-rw-r--r-- ... file1

• Permissions maintained as bit vectors

– Letter means bit is 1 

– “--” means bit is 0.



Bitwise Operations

01101101                Java: z=x|y
∨ 00110111

01111111              

00101010 Java: z=x&y
∧ 00001111

00001010  

01101101                Java: z=x^y
⊕ 00110111

01011010



A Useful Identity

• If x and y are bits:  (x ⊕ y) ⊕ y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 

Bob so that eavesdropper Eve who hears their 

conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 

a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 

– Eve does not know K

• Later, Alice has n-bit message m to send to Bob

– Alice computes  C = m ⊕ K

– Alice sends C to Bob

– Bob computes m = C ⊕ K which is (m ⊕ K) ⊕ K

• Eve cannot figure out m from C unless she can 

guess K



Russell’s Paradox

Suppose for contradiction that I ∈ I…



Russell’s Paradox

Suppose for contradiction that I ∈ I.  Then, by definition of 

I, I ∉ I, but that’s a contradiction.

Suppose for contradiction that I ∉ I.  Then, by definition of 

the set I, I ∈ I, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 

statement is false.”


