CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?(1) "x is a cat", "x barks", "x ruined my couch"

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

(3) "x is a pre-req for z"

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?(1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

"numbers" or "integers" or "integers greater than 5" or ...

(3) "x is a pre-req for z"

"courses"

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Last class: Statements with Quantifiers

- - ----

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

∃x Even(x)

 $\forall x \text{ Odd}(x)$

 $\forall x (Even(x) \lor Odd(x))$

 $\exists x (Even(x) \land Odd(x))$

∀x Greater(x+1, x)

 $\exists x (Even(x) \land Prime(x))$

Statements with Quantifiers

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

- ∃x Even(x) **T** e.g. 2, 4, 6, ...
- $\forall x \text{ Odd}(x)$ **F** e.g. 2, 4, 6, ...

Т

- $\forall x (Even(x) \lor Odd(x))$ **T**
- $\exists x (Even(x) \land Odd(x))$ **F**
- ∀x Greater(x+1, x)

 $\exists x (Even(x) \land Prime(x))$ **T**

- every integer is either even or odd
- no integer is both even and odd
 - adding 1 makes a bigger number
 - Even(2) is true and Prime(2) is true

Statements with Quantifiers

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

```
∀x ∃y Greater(y, x)
```

```
\forall x \exists y \text{ Greater}(x, y)
```

```
\forall x \exists y (Greater(y, x) \land Prime(y))
```

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

```
\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))
```

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Greater(x, y) ::= "x > y"
Equal(x, y) ::= " $x = y$ "
Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

∀x∃y Greater(x, y)

For every positive integer x, there is a positive integer y, such that x > y.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x \text{ (Prime(x)} \rightarrow \text{(Equal(x, 2)} \lor \text{Odd(x)))}$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x∃y Greater(y, x)

There is no greatest integer.

∀x ∃y Greater(x, y)

There is no least integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer there is a larger number that is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist prime numbers that differ by two."

English to Predicate Logic

Domain of Discourse Mammals **Predicate Definitions**

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

"Some red cats don't like tofu"

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

- (*) $\forall x PurpleFruit(x)$ ("All fruits are purple")
 - What is the negation of (*)?
 - (a) "there exists a purple fruit"
 - (b) "there exists a non-purple fruit"
 - (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

- (*) $\forall x PurpleFruit(x)$ ("All fruits are purple")
 - What is the negation of (*)?
 - (a) "there exists a purple fruit"
 - (b) "there exists a non-purple fruit"
 - (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer there is a larger integer"

 $\exists x (P(x) \land Q(x))$ VS. $\exists x P(x) \land \exists x Q(x)$

 $\exists x \ (P(x) \land Q(x)) \qquad \forall s. \qquad \exists x \ P(x) \land \exists x \ Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Example: NotLargest(x)
$$\equiv \exists$$
 y Greater (y, x)
 $\equiv \exists$ z Greater (z, x)

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

 $\forall \mathsf{x} (\exists \mathsf{y} (\mathsf{P}(\mathsf{x},\mathsf{y}) \to \forall \mathsf{x} \mathsf{Q}(\mathsf{y},\mathsf{x})))$

Quantifier "Style"

This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can sometimes change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter

Predicate Definitions GreaterEq(x, y) ::= " $x \ge y$ "

×3,

4

y

3

4

С

"There is a number greater than or equal to all numbers."

 $\exists x \forall y \text{ GreaterEq}(x, y)))$

"Every number has a number greater than or equal to it."

 $\forall y \exists x \text{ GreaterEq}(x, y))$

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

Quantification with Two Variables

expression	when true	when false
∀x ∀ y P(x, y)	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as $p, p \rightarrow q$ $\therefore q$
- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.pGiven2. $p \rightarrow q$ Given3. $q \rightarrow r$ Given4.5.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.pGiven2. $p \rightarrow q$ Given3. $q \rightarrow r$ Given4.qMP: 1, 25.rMP: 3, 4

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.	p ightarrow q	Given
2.	−q	Given
3.	$\neg q \rightarrow \neg p$	Contrapositive: 1
4.	−p	MP: 2, 3

Inference Rules

• Each inference rule is written as: ...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:

– e.g. Excluded Middle Axiom

∴ p∨¬p

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

Show that **r** follows from **p**, **p** \rightarrow **q** and (**p** \wedge **q**) \rightarrow **r**

How To Start:

We have givens, find the ones that go $p, p \rightarrow q$ together and use them. Now, treat new $\therefore q$ things as givens, and repeat.

> p ∧ q ∴ p, q

<u>p, q</u> ∴ p ∧ q Show that *r* follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

$$p \quad p \rightarrow q \text{MP}$$

$$p \quad q \text{Intro} \land$$

$$p \land q \quad p \land q \rightarrow r$$

$$r$$

1.	p	Given
2.	$p \rightarrow q$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro \: 1, 3
5.	$p \land q \rightarrow r$	Given
6.	r	MP: 4, 5

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow q$$
 given
2. $(p \lor r) \rightarrow q$ intro \lor from 1.

Does not follow! e.g. p=F, q=F, r=T