
CSE 311: Foundations of Computing

Lecture 6:  More Predicate Logic



Predicate

– A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”

LessThan(x, y) ::= “x < y”

Sum(x, y, z) ::= “x + y = z”

GreaterThan5(x) ::= “x > 5”

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments 

and input types.   

Last class: Predicates



Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we 

work over.  This set of objects is called the “domain of 

discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “x is a pre-req for z”



Domain of Discourse

For ease of use, we define one “type”/“domain” that we 

work over.  This set of objects is called the “domain of 

discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “integers greater than 5” or …

“courses”



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

∀x P(x)

P(x) is true for every x in the domain

read as “for all x, P of x”

∃x P(x) 

There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Last class: Statements with Quantifiers

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∃x Even(x)

∀x Odd(x)

∀x (Even(x) ∨ Odd(x))

∃x (Even(x) ∧ Odd(x))

∀x Greater(x+1, x)

∃x (Even(x) ∧ Prime(x))

Determine the truth values of each of these statements:



Statements with Quantifiers

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∃x Even(x)

∀x Odd(x)

∀x (Even(x) ∨ Odd(x))

∃x (Even(x) ∧ Odd(x))

∀x Greater(x+1, x)

∃x (Even(x) ∧ Prime(x))

Determine the truth values of each of these statements:

T e.g. 2, 4, 6, ...

F e.g. 2, 4, 6, ...

T      every integer is either even or odd

F      no integer is both even and odd

T      adding 1 makes a bigger number

T      Even(2) is true and Prime(2) is true



Statements with Quantifiers

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∀x ∃y Greater(y, x)

∀x ∃y Greater(x, y)

∀x ∃y (Greater(y, x) ∧ Prime(y))

∀x (Prime(x) → (Equal(x, 2) ∨ Odd(x)))

∃x ∃y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)) 

Translate the following statements to English



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∀x ∃y Greater(y, x)

∀x ∃y Greater(x, y)

∀x ∃y (Greater(y, x) ∧ Prime(y))

∀x (Prime(x) → (Equal(x, 2) ∨ Odd(x)))

∃x ∃y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)) 

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

For every positive integer x, there is a positive integer y, such that x > y.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x + 2 = y and x and y are prime.



Statements with Quantifiers (Natural Translations)

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∀x ∃y Greater(y, x)

∀x ∃y Greater(x, y)

∀x ∃y (Greater(y, x) ∧ Prime(y))

∀x (Prime(x) → (Equal(x, 2) ∨ Odd(x)))

∃x ∃y (Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)) 

Translate the following statements to English

There is no greatest integer.

There is no least integer.

For every positive integer there is a larger number that is prime.

Every prime number is either 2 or odd.

There exist prime numbers that differ by two.”



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”

Red(x) ::= “x is red”

LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals

Domain of Discourse



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”

Red(x) ::= “x is red”

LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals

Domain of Discourse

∀x ((Red(x) ∧ Cat(x)) → LikesTofu(x))

∃y ((Red(y) ∧ Cat(y)) ∧ ¬LikesTofu(y))



“Red cats like tofu” 

“Some red cats don’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”

Red(x) ::= “x is red”

LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals

Domain of Discourse

When there’s no leading 

quantification, it means “for all”.

“Some” means “there exists”.

When putting two predicates together like this, we 

use an “and”.

When restricting to a smaller 

domain in a “for all” we use 

implication.

When restricting to a smaller 

domain in an “exists” we use 

and.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”

Predicate Definitions

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”

(b) “there exists a non-purple fruit”

(c) “all fruits are not purple”

Try your intuition!  Which one “feels” right?

Key Idea: In every domain, exactly one of a 

statement and its negation should be true.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”

Predicate Definitions

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”

(b) “there exists a non-purple fruit”

(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 

statement and its negation should be true.

{plum}

Domain of Discourse

{apple}

Domain of Discourse

{plum, apple}

Domain of Discourse

(*), (a) (b), (c) (a), (b)



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”

Predicate Definitions

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”

(b) “there exists a non-purple fruit”

(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 

statement and its negation should be true.

{plum}

Domain of Discourse

{apple}

Domain of Discourse

{plum, apple}

Domain of Discourse

(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).



De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ ∃ x ∀ y  ( x ≥ y)

≡ ∀ x ¬ ∀y  ( x ≥ y)

≡ ∀ x  ∃ y ¬ ( x ≥ y)

≡ ∀ x  ∃ y (y > x)

“There is no largest integer”

“For every integer there is a larger integer”

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



Scope of Quantifiers

∃x  (P(x) ∧ Q(x)) vs. ∃x P(x) ∧ ∃x Q(x)



scope of quantifiers

∃x (P(x) ∧ Q(x)) vs. ∃x P(x) ∧ ∃x Q(x)

This one asserts P 

and Q of the same x.

This one asserts P and Q 

of potentially different x’s.



Scope of Quantifiers

Example: NotLargest(x)  ≡ ∃ y Greater (y, x)                          

≡ ∃ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula 

they quantify

∀ x (∃ y (P(x,y) → ∀ x Q(y, x)))



Quantifier “Style”

∀x(∃y (P(x,y) → ∀ x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.

Don’t confuse your reader by using the same 

variable multiple times…there are a lot of letters…



Nested Quantifiers

• Bound variable names don’t matter

∀x ∃y P(x, y) ≡ ∀a ∃b P(a, b)

• Positions of quantifiers can sometimes change

∀x (Q(x) ∧ ∃y P(x, y)) ≡ ∀x ∃y (Q(x) ∧ P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

∃x ∀y GreaterEq(x, y)))

∀y ∃x GreaterEq(x, y)))



Quantification with Two Variables

expression when true when false

∀x ∀ y P(x, y) Every pair is true. At least one pair is false.

∃ x ∃ y P(x, y) At least one pair is true. All pairs are false.

∀ x ∃ y P(x, y) We can find a specific y for 

each x.

(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 

corresponding y.

∃ y ∀ x P(x, y) We can find ONE y that 

works no matter what x is.

(x1, y), (x2, y), (x3, y)

For any candidate y, there is 

an x that it doesn’t work for.



Logical Inference

• So far we’ve considered:

– How to understand and express things using 
propositional and predicate logic

– How to compute using Boolean (propositional) logic

– How to show that different ways of expressing or 
computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know

– Equivalence is a small part of this



Applications of Logical Inference

• Software Engineering

– Express desired properties of program as set of logical 
constraints

– Use inference rules to show that program implies that 
those constraints are satisfied

• Artificial Intelligence

– Automated reasoning 

• Algorithm design and analysis

– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog

– Express desired outcome as set of constraints

– Automatically apply logic inference to derive solution



Proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If p and p → q are both true then q must be true

• Write this rule as

• Given: 

– If it is Monday then you have a 311 class today. 

– It is Monday.

• Therefore, by Modus Ponens:  

– You have a 311 class today.

p, p → q

∴ q



My First Proof!

Show that r follows from p, p → q, and q → r

1.  p Given

2. p → q     Given

3. q → r Given

4.

5.



My First Proof!

Show that r follows from p, p → q, and q → r

1.  p Given

2. p → q     Given

3. q → r Given

4. q  MP: 1, 2

5. r MP: 3, 4



Proofs can use equivalences too

Show that ¬p follows from p → q and ¬q

1. p → q              Given

2. ¬q                 Given

3. ¬q → ¬p     Contrapositive: 1

4. ¬p                 MP: 2, 3



Inference Rules

• Each inference rule is written as:

...which means that if both A and B

are true then you can infer C and

you can infer D.

– For rule to be correct  (A ∧ B) → C  and 

(A ∧ B) → D  must be a tautologies

• Sometimes rules don’t need anything to start with.  
These rules are called axioms:

– e.g. Excluded Middle Axiom

A, B  

∴ C,D

∴ p ∨¬p 



Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary 

connective, one to eliminate it and one to introduce it

p ∧ q

∴ p, q

p, q   

∴ p ∧ q 

p              x

∴ p ∨ q, q ∨ p
p ∨ q , ¬p

∴ q

p, p → q

∴ q

p  q  

∴ p → q
Direct Proof Rule
Not like other rules



Proofs

Show that r follows from p, p → q and (p ∧ q) → r

p, p → q

∴ q

How To Start:

We have givens, find the ones that go 

together and use them.  Now, treat new

things as givens, and repeat.

p ∧ q

∴ p, q

p, q   

∴ p ∧ q 



Proofs

Show that � follows from �, � → �, and � ∧ � → �

1. � Given

2. � → � Given

3. � MP: 1, 2

4. � ∧ � Intro ∧: 1, 3

5. � ∧ � → � Given

6. � MP: 4, 5

��

� ∧ � � ∧ � → �

�

MP

Intro ∧

MP

Two visuals of the same proof.

We will use the top one, but if 

the bottom one helps you 

think about it, that’s great!

�    � → �



Important: Applications of Inference Rules

• You can use equivalences to make substitutions

of any sub-formula.

• Inference rules only can be applied to whole 

formulas (not correct otherwise).

e.g.  1.  p → q given

2.  (p ∨ r) → q           intro ∨ from 1.

Does not follow!  e.g . p=F, q=F, r=T


