CSE 311: Foundations of Computing I

Strong Induction Annotated Proofs

Relevant Definitions

Fibonacci Numbers

$$
f_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { if } n>1\end{cases}
$$

Bounding the Fibonacci Numbers

Prove that for all $n \in \mathbb{N} \backslash\{0,1\}, 2^{n / 2-1} \leq f_{n}<2^{n}$.

Proof
Let $P(n)$ be " $2^{n / 2-1} \leq f_{n}<2^{n}$ " for all $n \in \mathbb{N} \backslash$ $\{0,1\}$. We go by strong induction on n.

Base Case:

Note that $2^{2 / 2-1}=2^{0}=1 \leq 1=0+1=$ $f_{0}+f_{1}=f_{2}<4=2^{2}$. So, $P(2)$ is true.

Induction Hypothesis:

Suppose that $P(2) \wedge P(3) \wedge \cdots \wedge P(k)$ is true.

Induction Step:

We show that $P(k+1)$ is true.

Case $((k+1)-2<2 \leftrightarrow k<3 \leftrightarrow k=2)$:
Note that $2^{3 / 2-1}=\frac{1}{2} \leq 2=1+1=f_{1}+$ $f_{2}=f_{3}<8=2^{3}$. So, $P(3)$ is true.

Commentary \& Scratch Work

We're using strong induction because it's a recurrence.

An alternative, is to introduce a variable to range over the hypotheses. This would look like "Suppose that $P(\ell)$ is true for all $2 \leq \ell \leq k$ for some $k \in$ $\mathbb{N} \backslash\{0,1\}$.'

In strong induction, the IS takes careful planning. Whenever we attempt to use the IH , we need to make sure we've actually assumed it. In particular, we must ask:

- What is the smallest value that k could be? (Here it's 2)
- If it's the smallest value, can we plug into the recurrence for $k+1$? $(k+1=2+1=3$, $f_{3}=f_{2}+f_{1}$)
- If any of the values we'd need to plug in (here, 2 and 1) are less than our IH, (here, this is true for 1) we need special cases.

Again, this case happened, because we can't apply the $I H$ to f_{1}.

Case $((k+1)-2 \geq 2 \leftrightarrow k \geq 3)$:
Since $k \geq 3$, we know $f_{k+1}=f_{k}+f_{k-1}$. Furthermore, we know that $P(k)$ and $P(k-$ 1) are both true by our IH . We take each piece of the claim independently.
Note that

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} \\
& \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1} \\
& =2\left(2^{(k-1) / 2-1}\right) \\
& =2^{2 / 2+(k-1) / 2-1} \\
& =2^{(k+1) / 2-1}
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} \\
& \leq 2^{k}+2^{k-1} \\
& \leq 2^{k}+2^{k} \\
& \leq 2^{k+1}
\end{aligned}
$$

Since the claim is true for both cases, $P(k) \rightarrow P(k+1)$.

So, the claim is true for all $n \geq 2$ by induction on n.

This is just a bunch of algebra. There's nothing special here other than the idea to just use the recurrence.

