CSE 311: Foundations of Computing I

Strong Induction Annotated Proofs

Relevant Definitions

Fibonacci Numbers			DEFINITION
	$f_n = \begin{cases} 0\\ 1 \end{cases}$	$ \begin{array}{l} \text{if } n=0 \\ \text{if } n=1 \end{array} \end{array} $	
	$\int f_{n-1} + f_{n-2}$	if $n > 1$	

Bounding the Fibonacci Numbers Prove that for all $n \in \mathbb{N} \setminus \{0,1\}$, $2^{n/2-1} \leq f_n < 2^n$.

Proof	Commentary & Scratch Work	
Let $P(n)$ be " $2^{n/2-1} \leq f_n < 2^{n}$ " for all $n \in \mathbb{N} \setminus \{0,1\}$. We go by strong induction on n .	We're using strong induction because it's a recur- rence.	
Base Case: Note that $2^{2/2-1} = 2^0 = 1 \le 1 = 0 + 1 = f_0 + f_1 = f_2 < 4 = 2^2$. So, $P(2)$ is true.		
Induction Hypothesis: Suppose that $P(2) \land P(3) \land \dots \land P(k)$ is true.	An alternative, is to introduce a variable to range over the hypotheses. This would look like "Suppose that $P(\ell)$ is true for all $2 \le \ell \le k$ for some $k \in$ $\mathbb{N} \setminus \{0,1\}$."	
Induction Step: We show that $P(k+1)$ is true.	In strong induction, the IS takes careful planning. Whenever we attempt to use the IH, we need to make sure we've actually assumed it. In particular, we must ask:	
	• What is the smallest value that k could be? (Here it's 2)	
	 If it's the smallest value, can we plug into the recurrence for k + 1? (k + 1 = 2 + 1 = 3, f₃ = f₂ + f₁) 	
	• If any of the values we'd need to plug in (here, 2 and 1) are less than our IH, (here, this is true for 1) we need special cases.	
Case $((k+1) - 2 < 2 \leftrightarrow k < 3 \leftrightarrow k = 2)$: Note that $2^{3/2-1} = \frac{1}{2} \le 2 = 1 + 1 = f_1 + f_2 = f_3 < 8 = 2^3$. So, $P(3)$ is true.	Again, this case happened, because we can't apply the IH to f_1 .	

 $\begin{array}{l} \mathsf{Case}\;((k+1)-2\geq 2\leftrightarrow k\geq 3)\text{:}\\ \mathsf{Since}\;k\geq 3,\;\mathsf{we}\;\mathsf{know}\;f_{k+1}=f_k+f_{k-1}.\\ \mathsf{Furthermore,\;we\;know\;that}\;P(k)\;\mathsf{and}\;P(k-1)\;\mathsf{are\;\;both\;\;true\;\;by\;\;our\;\;\mathsf{IH}.\;\;\mathsf{We\;\;take\;\;each}\;\\ \mathsf{piece\;\;of\;the\;\;claim\;independently.}\\ \mathsf{Note\;\;that} \end{array}$

$$f_{k+1} = f_k + f_{k-1}$$

$$\geq 2^{k/2-1} + 2^{(k-1)/2-1}$$

$$\geq 2^{(k-1)/2-1} + 2^{(k-1)/2-1}$$

$$= 2(2^{(k-1)/2-1})$$

$$= 2^{2/2+(k-1)/2-1}$$

$$- 2^{(k+1)/2-1}$$

Also, we have

$$f_{k+1} = f_k + f_{k-1}$$
$$\leq 2^k + 2^{k-1}$$
$$\leq 2^k + 2^k$$
$$\leq 2^{k+1}$$

Since the claim is true for both cases, $P(k) \rightarrow P(k+1)$.

So, the claim is true for all $n \geq 2$ by induction on n.

This is just a bunch of algebra. There's nothing special here other than the idea to just use the recurrence.