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Pre-Lecture Problem

Suppose that 𝑝, and 𝑝 → (𝑞 ∧ 𝑟) are true.  Is 𝑞
true?  Can you prove it with equivalences?



CSE 311: Foundations of Computing

Lecture 7:  Proofs



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Proofs

• Start with hypotheses and facts (Axioms)
• Use “rules” to generate more facts from existing 

facts (Inference Rules)
• Result is proved when it is included in the set of 

“proven facts”



Axioms

∴ C	  	  	  	  D

∴ A	  ∨¬A

Requirements:
Conclusions:

If I have nothing…

Then, I have 
also proven C

Then, I have 
also proven D

Example (Excluded Middle):

I have a proof of A ∨¬A.



Inference Rules

A	  	  	  	  	  	  	  	  B	  
∴ C	  	  	  	  D

A	  	  	  	  	  	  A	  → B	  	  	  
∴ B	  	  	  

Requirements:
Conclusions:

If I have a proof of A and 
I have a proof of B….

Then, I have 
also proven C

Then, I have 
also proven D

Example (Modus Ponens):

If I have a proof of A and a proof of
A → B, then I have a proof of B.



An inference rule:  Modus Ponens
• If p and p → q are both true then q must be true

• Write this rule as

• Given: 
– If it’s Saturday, then you have a 311 lecture today.
– It’s Saturday.

• Therefore, by modus ponens:  
– You have a 311 lecture today.

Modus Ponens

A	  	  	  	  	  A	  → B	  
∴ B	  



My First Proof!

Show that r follows from p, p → q, and q → r

1.  p Given
2. p → q     Given
3. q → r Given
4.
5.



My First Proof!

Show that r follows from p, p → q, and q → r

1.  p Given
2. p → q     Given
3. q → r Given
4. q  MP: 1, 2
5. r MP: 3, 4



Proofs can use equivalences too

Show that ¬p follows from p → q and ¬q

1. p → q Given
2. ¬q Given
3. ¬q → ¬p     Contrapositive: 1
4. ¬p MP: 2, 3



More Inference Rules

Introduction∧

∴

Each connective has an “introduction rule” and an “elimination rule”

Consider “and”.  To know A ∧ B	  is true, what do we need to know…?

A B A ∧ B	  



More Inference Rules

Introduction∧
A	  	  	  	  	  	  	  	  	  	  B	  	  	  	  

∴ A ∧ B	  

Each connective has an “introduction rule” and an “elimination rule”

Consider “and”.  To know A ∧ B	  is true, what do we need to know…?

The only case A ∧ B	  is true is when A and 
B are both true.

A B A ∧ B	  
T T T

T F F

T T F

T F F

So, we can only prove A ∧ B	  if we already 
have a proof for A and we already have a 
proof for B.



More Inference Rules

Elimination∧
A	  ∧ B

∴ A	  	  	  	  	  	  	  	  	  B

Each connective has an “introduction rule” and an “elimination rule”

“Elimination” rules go the other way.  If we know A ∧ B,	  then what do 
we know about A and B individually?

When A ∧ B	  is true, then A is true and B is true.

A B A ∧ B	  
T T T

T F F

T T F

T F F

So, if we can prove A ∧ B, then we can 
also prove A and we can also prove B.



Proofs

Show that r follows from	  𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟
How To Start:

We have givens, find the ones that go 
together and use them.  Now, treat new
things as givens, and repeat.

Elimination∧
A	  ∧ B

∴ A	  	  	  	  	  	  	  	  	  B

Introduction∧
A	  	  	  	  	  	  	  	  	  	  B	  	  	  	  

∴ A ∧ B	  

Modus Ponens

A	  	  	  	  	  A	  → B	  
∴ B	  



Proofs

Show that r follows from	  𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4. 𝑝 ∧ 𝑞 Intro ∧: 1, 3
5. 𝑝 ∧ 𝑞 → 𝑟 Given
6. 𝑟 MP: 4, 5

𝑞𝑝
𝑝 ∧ 𝑞 𝑝 ∧ 𝑞 → 𝑟

𝑟

MP

Intro ∧

MP

Two visuals of the same proof.
We will focus on the top one,
but if the bottom one helps 
you think about it, that’s great!

𝑝	  	  	  	  𝑝 → 𝑞



Simple Propositional Inference Rules

p	  ⇒ q	  	  
∴ p	  → q

Direct	  Proof	  Rule
Not	  like	  other	  rules

IntroductionElimination

∧

∨

Elimination∧
A	  ∧ B

∴ A	  	  	  	  	  	  	  	  	  B

Introduction∧
A	  	  	  	  	  	  	  	  	  	  B	  	  	  	  

∴ A ∧ B	  

Modus Ponens

A	  	  	  	  	  A	  → B	  
∴ B	  

Elimination∨
A	  ∨ B	   ¬A	  
∴ B

Introduction∨
A	  	  	  	  	  	  	  	  	  	  	  	  

∴ A	  ∨ B	  	  	  	  B	  ∨ A	  

→



Important: Application of Inference Rules

• You can use equivalences to make substitutions
of any sub-formula.

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

e.g.  1.  p	  → q Given
2.  (p	  ∨ r)	  → q	   Intro ∨: 1



Important: Application of Inference Rules

• You can use equivalences to make substitutions
of any sub-formula.

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

e.g.  1.  p	  → q Given
2.  (p	  ∨ r)	  → q	   Intro ∨: 1

Does not follow!  e.g . p=F, q=F, r=T



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

45. ¬𝒓 Idea: Work backwards!



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

45. ¬𝒓

Idea: Work backwards!

We want to eventually get ¬r.  How?
• We can use 𝑞 → ¬𝑟 to get there.



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

44. 𝑞 → ¬𝑟 Given
45. ¬𝒓 MP: 44, 

Idea: Work backwards!

We want to eventually get ¬r.  How?
• We can use 𝑞 → ¬𝑟 to get there.
• The justification between 44 and 

45 looks like “implication elim” 
which is MP.

• So, we can justify line 45 now!?



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

43. 𝒒
44. 𝑞 → ¬𝑟 Given
45. ¬𝑟 MP: 44, 43 

Idea: Work backwards!

We want to eventually get ¬r.  How?
• Now, we have a new “hole”
• We need to prove q…

• Notice that at this point, if we 
prove q, we’ve proven ¬𝑟…?

Used!



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

42. ¬𝑠 ∨ 𝑞 Given
43. 𝒒
44. 𝑞 → ¬𝑟 Given
45. ¬𝑟 MP: 44, 43 

Idea: Work backwards!

We want to eventually get q.  How?
• Find a relevant given!

?

Used!

This looks like or-elimination.



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

41. ¬¬𝒔
42. ¬𝑠 ∨ 𝑞 Given
43. 𝑞 ∨ Elim: 42, 41
44. 𝑞 → ¬𝑟 Given
45. ¬𝑟 MP: 44, 43 

It’s more likely that ¬¬𝑠 shows up as 𝑠…

Used! Used!



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

39. 𝑝 ∧ 𝑠 Given
40. 𝒔
41. ¬¬𝑠 Double Negation: 40
42. ¬𝑠 ∨ 𝑞 Given
43. 𝑞 ∨ Elim: 42, 41
44. 𝑞 → ¬𝑟 Given
45. ¬𝑟 MP: 44, 43 

Use our last given!

Used! Used!

Remember, we’re allowed 
to use equivalences!



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

39. 𝑝 ∧ 𝑠 Given
40. 𝑠 ∧ Elim: 39
41. ¬¬𝑠 Double Negation: 40
42. ¬𝑠 ∨ 𝑞 Given
43. 𝑞 ∨ Elim: 42, 41
44. 𝑞 → ¬𝑟 Given
45. ¬𝑟 MP: 44, 43 

Used! Used!

We don’t have any holes in the proof left!  We’re done!

Used!



Proofs
Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

1. 𝑝 ∧ 𝑠 Given
2. 𝑠 ∧ Elim: 1
3. ¬¬𝑠 Double Negation: 2
4. ¬𝑠 ∨ 𝑞 Given
5. 𝑞 ∨ Elim: 4, 3
6. 𝑞 → ¬𝑟 Given
7. ¬𝑟 MP: 6, 5

Well, almost, let’s renumber the steps:



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” for using the direct proof rule is 

that we write a proof that Assuming A, we can 
prove B.

• The direct proof rule:
If you have such a proof then you can conclude        
that p → q is true

Example: Prove p → (p ∨ q).
1.1   p            Assumption                               
1.2   p ∨ q      Intro ∨: 1                             

1.   p → (p ∨ q)     Direct Proof Rule

proof	  subroutine



Proofs using the direct proof rule

Show that p → r follows from q and (p ∧ q) → r

1.   q Given
2. (p ∧ q) → r Given

3.1.   p Assumption
3.2.   p ∧ q Intro ∧: 1, 3.1
3.3.   r MP: 2, 3.2

3.    p → r              Direct Proof Rule

This is a 
proof

of 𝑝 → 𝑟

If we know p is true…
Then, we’ve shown

r is true



Example

Prove:  (p ∧ q) → (p ∨ q)

There MUST be an application of the
Direct Proof Rule to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p ∧ q) → (p ∨ q)



Example

Prove:  (p ∧ q) → (p ∨ q)

1.1.   p ∧ q Assumption
1.2.   p Elim ∧: 1.1
1.3.   p ∨ q Intro ∨: 1.2

1.   (p ∧ q) → (p ∨ q) Direct Proof Rule



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)



Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

(1.1) 𝑝 → 𝑞 ∧ (𝑞 → 𝑟) Assumption
(1.2) 𝑝 → 𝑞 ∧ Elim: 1.1
(1.3) 𝑞 → 𝑟 ∧ Elim: 1.1

(1.4.1) 𝑝 Assumption
(1.4.2) 𝑞 MP: 1.2, 1.4.1
(1.4.3) 𝑟 MP: 1.3, 1.4.2

(1.4) (𝑝 → 𝑟) Direct Proof Rule

(1) 𝑝 → 𝑞 ∧ 𝑞 → 𝑟 → (𝑝 → 𝑟) Direct Proof Rule



One General Proof Strategy

1. Look at the rules for introducing connectives to 
see how you would build up the formula you want 
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 
down the given formulas so that you get the 
pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.



Inference rules for quantifiers

*	  in	  the	  domain	  of	  P	   **	  By	  special,	  we	  mean	  that	  c	  is	  a	  
name	  for	  a	  value	  where	  P(c)	  is	  true.	  
We	  can’t	  use	  anything	  else	  about	   that	  
value,	  so	  c	  has	  to	  be	  a	  NEW	  variable!

Elimination∃

∃x	  P(x)
∴ P(c) for some special** c

Introduction∃

P(c)	  for	  some	  c
∴ ∃x	  P(x)

Introduction∀

∀x	  P(x)	  	  	  	  	  	  	  	  
∴ P(a)	  for any a

Introduction∀

“Let a	  be arbitrary*”...P(a)
∴ ∀x	  P(x)



Definitions: The Base of All Proofs

• Before proving anything about a                        
topic, we need to provide                           
definitions.

• A significant part of writing proofs is unrolling and 
re-rolling definitions.

• Prove the statement ∃𝑎	   Even 𝑎

Even(x)	  ≡ ∃y	  (x	  =	  2y)
Odd(x)	  ≡ ∃y	  (x	  =	  2y	  	  +	  1)

Predicate	  Definitions

Integers
Domain	  of	  Discourse

Introduction∃

P(c)	  for	  some	  c
∴ ∃x	  P(x)



Definitions: The Base of All Proofs

• Before proving anything about a                        
topic, we need to provide                           
definitions.

• A significant part of writing proofs is unrolling and 
re-rolling definitions.

• Prove the statement ∃𝑎	   Even 𝑎

Even(x)	  ≡ ∃y	  (x	  =	  2y)
Odd(x)	  ≡ ∃y	  (x	  =	  2y	  	  +	  1)

Predicate	  Definitions

Integers
Domain	  of	  Discourse

1. 2 = 2	   ∗ 1 Definition of Multiplication
2. Even(2) Definition of Even
3. ∃𝑥	  Even(𝑥) ∃ Intro: 2

Introduction∃

P(c)	  for	  some	  c
∴ ∃x	  P(x)



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Even 𝑎

Even(x)	  ≡ ∃y	  (x	  =	  2y)
Odd(x)	  ≡ ∃y	  (x	  =	  2y	  	  +	  1)

Predicate	  Definitions

Integers
Domain	  of	  Discourse

Okay, you might say, but now we have “definition of 
multiplication”!  Isn’t that cheating?

Well, sort of, but we’re going to trust that basic arithmetic 
operations work the way we’d expect.  There’s a fine line, and 
you can always ask if you’re allowed to assume something 
(though the answer will usually be no…).

1. 2 = 2	   ∗ 1 Definition of Multiplication
2. Even(2) Definition of Even
3. ∃𝑥	  Even(𝑥) ∃ Intro: 2



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Primeish 𝑎

Even(x)	  ≡ ∃𝑦 𝑥 = 2𝑦
Odd(x)	  ≡ ∃𝑦 𝑥 = 2𝑦 + 1
Primeish(x)	  ≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥

Predicate	  Definitions

Integers	  >=	  1
Domain	  of	  Discourse

1. Let	  𝑎	  be	  arbitrary Defining a
2. Let	  𝑏	  be	  arbitrary Defining b
3. 𝑎 ≤ 2 ∨ 𝑎 > 2 Excluded Middle
4. b ≤ 2 ∨ 𝑏 > 2 Excluded Middle

Proof Strategy:
• 2 is going to work.  
• Try to prove all the individual facts we need.
• We do this from the inside out…



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Primeish 𝑎
Primeish(x)	  ≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥
Predicate	  Definitions

Integers	  >=	  1
Domain	  of	  Discourse

1. Let	  𝑎	  be	  arbitrary Defining a
2. Let	  𝑏	  be	  arbitrary Defining b
3. 𝑎 ≤ 2 ∨ 𝑎 > 2 Excluded Middle
4. b ≤ 2 ∨ 𝑏 > 2 Excluded Middle
5. 𝑎 ≤ 2 ∨ 𝑎 > 2 ∧ (b ≤ 2 ∨ 𝑏 > 2) ∧ Intro: 3, 4

6. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 Direct Proof Rule

6.1. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 Assumption

6.2. 𝑎 < 𝑏 ∧ Elim: 6.1

6.3. 𝑎𝑏 = 2 ∧ Elim: 6.1

6.4. 𝑎 = 1 ∧ 𝑏 = 2 Simplifying 5 via 6.2 & 6.3



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Primeish 𝑎
Primeish(x)	  ≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥
Predicate	  Definitions

Integers	  >=	  1
Domain	  of	  Discourse

1. Let	  𝑎	  be	  arbitrary Defining a
2. Let	  𝑏	  be	  arbitrary Defining b
3. 𝑎 ≤ 2 ∨ 𝑎 > 2 Excluded Middle
4. b ≤ 2 ∨ 𝑏 > 2 Excluded Middle
5. 𝑎 ≤ 2 ∨ 𝑎 > 2 ∧ (b ≤ 2 ∨ 𝑏 > 2) ∧ Intro: 3, 4

6. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 Direct Proof Rule
7. ∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 ∀ Intro: 6

6.1. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 Assumption

6.2. 𝑎 < 𝑏 ∧ Elim: 6.1

6.3. 𝑎𝑏 = 2 ∧ Elim: 6.1

6.4. 𝑎 = 1 ∧ 𝑏 = 2 Simplifying 5 via 6.2 & 6.3



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Primeish 𝑎
Primeish(x)	  ≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥
Predicate	  Definitions

Integers	  >=	  1
Domain	  of	  Discourse

1. Let	  𝑎	  be	  arbitrary Defining a
2. Let	  𝑏	  be	  arbitrary Defining b
3. 𝑎 ≤ 2 ∨ 𝑎 > 2 Excluded Middle
4. b ≤ 2 ∨ 𝑏 > 2 Excluded Middle
5. 𝑎 ≤ 2 ∨ 𝑎 > 2 ∧ (b ≤ 2 ∨ 𝑏 > 2) ∧ Intro: 3, 4

6. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 Direct Proof Rule
7. ∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 ∀ Intro: 6
8. Primeish(2) ∀ Intro: 7

6.1. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 Assumption

6.2. 𝑎 < 𝑏 ∧ Elim: 6.1

6.3. 𝑎𝑏 = 2 ∧ Elim: 6.1

6.4. 𝑎 = 1 ∧ 𝑏 = 2 Simplifying 5 via 6.2 & 6.3



Definitions: The Base of All Proofs

Prove the statement ∃𝑎	   Primeish 𝑎
Primeish(x)≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥
Predicate	  Definitions

Integers	  >=	  1
Domain	  of	  Discourse

1. Let	  𝑎	  be	  arbitrary Defining a
2. Let	  𝑏	  be	  arbitrary Defining b
3. 𝑎 ≤ 2 ∨ 𝑎 > 2 Excluded Middle
4. b ≤ 2 ∨ 𝑏 > 2 Excluded Middle
5. 𝑎 ≤ 2 ∨ 𝑎 > 2 ∧ (b ≤ 2 ∨ 𝑏 > 2) ∧ Intro: 3, 4

6. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 Direct Proof Rule
7. ∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 → 𝑎 = 1 ∧ 𝑏 = 2 ∀ Intro: 6
8. Primeish(2) ∀ Intro: 7
9. ∃𝑥	  Primeish(𝑥) ∃ Intro: 8

6.1. 𝑎 < 𝑏 ∧ 𝑎𝑏 = 2 Assumption

6.2. 𝑎 < 𝑏 ∧ Elim: 6.1

6.3. 𝑎𝑏 = 2 ∧ Elim: 6.1

6.4. 𝑎 = 1 ∧ 𝑏 = 2 Simplifying 5 via 6.2 & 6.3

BTW, this justification 
isn’t really good 
enough…



Proofs using Quantifiers

“There exists an even primeish number”
First, we translate into predicate logic:

∃x	  Even(x)	  ∧ Primeish(x)
We’ve already proven Even 2 and Primeish 2 ; so, we can 
use them as givens... 

1. Even(2) Prev. Slide
2. Primeish(2) Prev. Slide
3. Even 2 ∧ Primeish 2 ∧ Intro: 1, 2
4. ∃𝑥	   Even 𝑥 ∧ Primeish 𝑥 ∃ Intro: 3



Ugh…so much work

Note that 2 = 2*1 by definition of multiplication.  It follows that there is a 
y such that 2 = 2y;  so, two is even.  

Consider two arbitrary non-negative integers a, b.  
Suppose a < b and ab = 2.  Note that when b > 2, the product is always 
greater than 2.  Furthermore, a < b.  So, the only solution to the equation 
is a = 1 and b = 2.  So, a = 1 and b = 2.

Since a and b were arbitrary, it follows that 2 is primeish.
Since 2 is even and primeish, there exists a number that is even and 
primeish.

Even(x)	  ≡ ∃𝑦 𝑥 = 2𝑦
Primeish(x)	  ≡ ∀𝑎∀𝑏 𝑎 < 𝑏 ∧ 𝑎𝑏 = 𝑥 → 𝑎 = 1 ∧ 𝑏 = 𝑥

Predicate	  Definitions

This is the same proof, but infinitely easier to read and write….


