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Pre-Lecture Problem

Suppose that p,and p = (g A1) are true. Is g
true? Can you prove it with equivalences?
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CSE 311.: Foundations of Computing

Lecture 7: Proofs
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Applications of Logical Inference

Software Engineering

— Express desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

Artificial Intelligence

— Automated reasoning

Algorithm designh and analysis

— e.g., Correctness, Loop invariants.
Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints
— Automatically apply logic inference to derive solution



Proofs

e Start with hypotheses and facts (Axioms)

* Use “rules” to generate more facts from existing
facts (Inference Rules)

 Resultis proved whenAtis included-n the set of

“proven facts” %




Axioms

If | have nothing...

I

Requirements: 1 veE ~ eV ¢
Conclusions: .". C D\A b
Then, | have Then, | have
also provenC also provenD

Example (Excluded Middle):

| have a proof of A v-A.

Av-A



Inference Rules

If | have a proof of A and
| have. a-proof of B....

Requirements: A B
Conclusions: .’. C D\A
Then, | have Then, | have
also provenC also provenD

Example (Modus Ponens):

A A—B If | have a proof of A and a proof of
B A — B, then | have a proof of B.




An inference rule: Modus Ponens

* If p and p — g are both true then q must be true

__Modus Ponens

* Write this rule as QX @*@
- @ )

e Given:
— If it’s Saturday, then you have a 311 lecture today.
— It's Saturday.

 Therefore, by modus ponens:
— You have a 311 lecture today.



My First Proof!

Show that r follows fromp,p —q,and q —r
1. pD Given @ @
2.

Given
3.% Given @\
AR>S v e
S.
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My First Proof!

Show that r follows fromp,p —q,and q —r

1. P Given
2. p—q Given
3. g—r Given
4, q MP: 1,2
5. r MP: 3, 4



Proofs can use equivalences too

Show that —p followsfrom p — q and —q

1. Pp—(q Given
2 - Given

4. O] MP: 2, 3



More Inference Rules

Each connective has an “introduction rule” and an “elimination rule”

Consider “and”. To know A A Bis tFU@hQO we need to know...?

A | B |AAB W

A Introduction




More Inference Rules

Each connective has an “introduction rule” and an “elimination rule”

Consider “and”. To know A A B is true, what do we need to know...?

AAB

The only case A A B is true is when A and
B are both true.

A
T
T
T
T

M| AT | 4| @

A
T
F
F
F

A CHRCHO So, we can only prove A A B if we already
A B have a proof for A and we already have a
A AB proof for B.




More Inference Rules

Each connective has an “introduction rule” and an “elimination rule”

“Elimination” rules go the other way. If we know A A B, then what do
we know about A and B individually?

A AAB

T

—A | d | 4| -
M| 47| -]

F
F
F

When A A B is true, then A is true and B is true.

A Elimination

AAB

So, if we can prove A A B, then we can

\.

A B

also prove A and we can also prove B.

J




Proofs

Show that r follows frond PANgq DT
How To Start:

We have givens, find the ones that go
together and use them. Now, treat ne
things as givens, and repeat.
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Proofs

Show that r follows fromp,» - g, andp Aqg - r

1. p Given
Two visuals of the same proof. 2. p—q Given
We will focus on the top one, 3. ¢ MP: 1,2
but if the bottom one helps
you think about it, that’s great! 4. pAq Intro A: 1, 3
5. pAg—1 Given
6. r MP: 4, 5
- 7
P P2dyo
p q
Intro A/\
N\ - 7r
p/A\q p/\q MP

r



Simple Propositional Inference Rules

Elimination

A Elimination

AAB

\.

A B

J

V Elimination

AvB -A

B

Modus Ponens

A A—B

B

Introduction

A Introduction

V Introduction

A

\-'-AVB BvA)

J

Direct Proof Rule
P — g _/Not like other rules



Important: Application of Inference Rules

* You can use equivalences to make substitutions
of any sub-formula.

* Inference rules only can be applied to whole
formulas (not correct otherwise).

eg. 1. p—q Given
2. (pvr)—aqg Intro v: 1



Important: Application of Inference Rules

* You can use equivalences to make substitutions
of any sub-formula.

* Inference rules only can be applied to whole
formulas (not correct otherwise).

eg. 1. p—q Given

2. (pvr) >J‘|,W

T

Does not follow! e.g. p=F, q=F, r=T



Proofs

Prove that —r follows from p A @and SV (.

i

45, —r Idea: Work backwards!




Proofs

Prove that —r follows from p A s and —-s v q.

Idea: Work backwards!

We want to eventually get —-r. How?
We can use q — —r to get there.

45. —r



Proofs

Prove that —r follows from p A s, and —-s v q.

Idea: Work backwards!

We want to eventually get —-r. How?
* We can use q — —r to get there.
 The justification between 44 and

45 looks like “implication elim”
which is MP.

44, q - —-r  Given

45. —r MP: 44, * So, we can justify line 45 now!



Proofs

Prove that —r follows fromp A s -anci -s vV q.

Idea: Work backwards!

We want to eventually get —-r. How?
* Now, we have a new “hole”
* We need to proveq...
* Notice that at this point, if we

43. q @ prove q, we've proven —r ...

44. g —» —r  Given
45. —r MP: 44, 43




Proofs

Prove that —r follows from p A s,and @

Idea: Work backwards!

We want to eventually get q. How?
* Find arelevant given!

42. —-sVgq Given
43. q @ This looks like or-elimination.

44. g —» —r  Given
45. —r MP: 44, 43




Proofs

Prove that —r follows from p A s,and

41.
42.
43.
44,
45.

It's more likely that ——s shows up as s...

Given

V Elim: 42, 41
Given

MP: 44, 43



Proofs

Prove that —r follows fro @@

42.

Given
Use our last given!
Double Negation: 40
Given

V Elim: 42, 41

Given

MP: 44, 43

Remember, we'’re allowed
to use equivalences!



Proofs

Prove that —r follows froand
We don’t have any holes in the proof Ie%

39. pAs Given @
40. s A Elim: 39

41. —-s Double Negation: 40

42. —sVq Given

43. q V Elim: 42, 41

44, q - —-r  Given

45. —r MP: 44, 43




Proofs

N oA wNR

Prove that —r followsfromp A s, q — —r, and —=s v q.

Well, almost, let’s renumber the steps:

DAS Given

S A Elim: 1

——S Double Negation: 2
sV q Given

q V Elim: 4, 3

q > —r  Given
—r MP: 6,5



To Prove An Implication: A - B

 We use the direct proof rule

* The “pre-requisite” for using the direct proof rule is
that we write a proof that Assuming A, we can
prove B.

* The direct proof rule:
If you have such a proof then you can conclude
that p — q is true
Example: Provep — (p v Q).

[1.1 p Assumption ]
1.2 pvq Intro v: 1
1. p—=(pvq) Direct Proof Rule




Proofs using the direct proof rule

Show that p — r followsfromqgqand (p A q) —r

1. ¢ Given
2. (pArq)—r Given
This is a 3.1. P Assumption A |
roof 3.9 Int 1 31 If we know p is true...
P < PAQ Ntro A: L, 3.1 Then, we've shown
ofp -»r

3.3. ¥t MP:2,3.2 r is true
3 Epier ) @r%




Example

Prove: (p vV q)

There MUST be an application of the
Direct Proof Rule to prove this implication.

Where do we start? We have no givens...



Example

Prove: (pAq)—(pvVv Q)



Example

Prove: (pAq)—(pvVv Q)

1.1. paAg Assumption
1.2. p Elima: 1.1
1.3. pvg Intro v: 1.2

1. (prg)—(pVvq) Direct Proof Rule



Example

Prove: ((p—q)A(q—1)—=(p—>r)



Example

Prove: ((p—q)A(q—1)—=(p—>r)

(1.1) (»p > q)A(q —»r) Assumption

(1.2) p—gq A Elim: 1.1

(1.3) g—r A Elim: 1.1
(1.41) p Assumption
(1.4.2) g MP:1.2,14.1
(1.4.3) r MP: 1.3,1.4.2

(1.4) (p—>71) Direct Proof Rule

1) (p->q)A(g-71)) - (p—-r) Direct Proof Rule



One General Proof Strategy

1.

Look at the rules for introducing connectives to
see how you would build up the formula you want
to prove from pieces of what is given

Use the rules for eliminating connectives to break
down the given formulas so that you get the

pieces you heed to do 1.

Write the proof beginning with what you figured
out for 2 followed by 1.



Inference rules for quantifiers

J Introduction

P(c) for somec

dx P(x)

J

Y Introduction

Y Introduction

Vx P(x)

o P(a) for any a )

J Elimination

“Let a be arbitrary*”...P(a)

\. L]

Vx P(x)

dx P(x)

J

*in the domain of P

(.' P(c) for some special** c

** By special, we mean that cis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW variable!




Domain of Discourse

Definitions: The Base of All Proofs [ integers

3 Introduction

* Before proving anything about a P(c) for some c
topic, we need to provide - IxP(x)
definitions.

* A significant part of writing proofs is unrolling and
re-rolling definitions. Predicate Definitions

Even(x) = dy (x = 2y)

Odd(x)=3dy (x=2y +1)

J

- Prove the statement 3a (Even(a))



Domain of Discourse

Definitions: The Base of All Proofs [ integers

3 Introduction
P(c) for some c

 Before proving anything about a

topic, we need to provide . 3xP(x) ]
definitions.

* A significant part of writing proofs is unrolling and
re-rolling definitions. Predicate Definitions

Even(x) = dy (x = 2y)
Odd(x)=3dy (x=2y +1)

- Prove the statement 3a (Even(a))
1. 2=2 1 Definition of Multiplication
2. Even(2) Definition of Even
3. Jx Even(x) 3 Intro:2



Domain of Discourse

Definitions: The Base of All Proofs [ integers

Predicate Definitions
Even(x) = dy (x = 2y)
Odd(x)=3dy (x=2y +1)

Prove the statement 3a (Even(a))
1. 2=2 1 Definition of Multiplication

2. Even(2) Definition of Even

3. dx Even(x) 3 Intro:2

Okay, you might say, but now we have “definition of
multiplication”! Isn’t that cheating?

Well, sort of, but we’re going to trust that basic arithmetic
operations work the way we’d expect. There’s a fine line, and
you can always ask if you’re allowed to assume something
(though the answer will usually be no...).




Domain of Discourse

Definitions: The Base of All Proofs [ integers>=1

Predicate Definitions
Even(x) =3y(x = 2y)
Odd(x) =3y(x =2y + 1)

\Primeish(x) = VaVvb (((a <bAab=x)->(a=1Ab= x)))

J

Prove the statement 3a (Primeish(a))

Proof Strategy:

« 2is going to work.

* Try to prove all the individual facts we need.
 We do this from the inside out...

1. Leta bearbitrary Defining a
2. Letb bearbitrary Defining b
3. a<2vVa>2 Excluded Middle
4. b<2Vvb>2 Excluded Middle



Definitions: The Base of All Proofs [ integers>=1

Domain of Discourse

Predicate Definitions

Primeish(x) = VaVb (((a <bAab=x)->(@=1Ab= x)))

Prove the statement 3a (Primeish(a))
1. Leta bearbitrary

2. Letb be arbitrary
3. as<2Va>2
4. b<2Vb>2
5. (a<2va>2)A(bb<2Vb>2)
6.1. a<bAab =2
6.2. a<b
6.3. ab =2
6.4. a=1Ab=2

6. (a<bnhnab=2)->(a=1Ab=2)

Defining a
Defining b
Excluded Middle
Excluded Middle
A Intro: 3, 4

Assumption
A Elim: 6.1
A Elim: 6.1
Simplifying 5via 6.2 & 6.3
Direct Proof Rule



Definitions: The Base of All Proofs [ integers>=1

Domain of Discourse

Predicate Definitions

Primeish(x) = VaVb (((a <bAab=x)->(@=1Ab= x)))

Prove the statement 3a (Primeish(a))
1.

o s~ DN

Let a be arbitrary

Let b be arbitrary

a<2Va>?2

b<2vb>2
(a<2va>2)A(b<2Vvb>2)
6.1. a<bAab =2

6.2. a<b

6.3. ab =2

6.4. a=1Ab=2

(a<bAhab=2)->(a=1Ab=2)
Vb(a<bAab=2)->(a=1Ab=2)

Defining a
Defining b
Excluded Middle
Excluded Middle
A Intro: 3, 4

Assumption
A Elim: 6.1
A Elim: 6.1
Simplifying 5via 6.2 & 6.3
Direct Proof Rule

Y Intro: 6



Definitions: The Base of All Proofs [ integers>=1

Domain of Discourse

Predicate Definitions

Primeish(x) = VaVb (((a <bAab=x)->(@=1Ab= x)))

Prove the statement 3a (Primeish(a))
1.

o s~ DN

~

Let a be arbitrary

Let b be arbitrary

a<2Va>?2

b<2vb>2
(a<2va>2)A(b<2Vvb>2)
6.1. a<bAab =2

6.2. a<b

6.3. ab =2

6.4. a=1Ab=2

(a<bAhab=2)->(a=1Ab=2)
Vb(a<bAab=2)->(a=1Ab=2)
Primeish(2)

Defining a
Defining b
Excluded Middle
Excluded Middle
A Intro: 3, 4

Assumption
A Elim: 6.1
A Elim: 6.1
Simplifying 5via 6.2 & 6.3
Direct Proof Rule

Y Intro: 6
Y Intro: 7



Domain of Discourse

Definitions: The Base of All Proofs |

Integers>=1

Predicate Definitions

Primeish(x) = VaVb (((a <bAab=x)->(@=1Ab= x)))

Prove the statement 3a (Primeish(a))

1. Leta bearbitrary Defining a
2. Letb be arbitrary BTW, this justification Defining b
3. a<2va>2 isn’t really good Excluded Middle
enough... .
4. b<2Vvb>2 Excluded Middle
5. (a<2va>2)A(bb<2Vb>2) A Intro: 3, 4
6.1. a<bAab =2 Assumption
6.2. a<b A Elim: 6.1
6.3. ab =2 A Elim: 6.1
6.4. a=1Ab=2 Simplifying 5 via 6.2 & 6.3
6. (a<bAab=2)->(a=1Ab=2) Direct Proof Rule
7. Vb(a<bAab=2)-(a=1Ab=2) Y Intro: 6
8. Primeish(2) V Intro: 7
9. 3x Primeish(x) 3 Intro: 8



Proofs using Quantifiers

“There exists an even primeish number’
First, we translate into predicate logic:
dx Even(x) A Primeish(x)

We’ve already proven Even(2)and Primeish(2); so, we can
use them as givens...

1. Even(2) Prev. Slide
2. Primeish(2) Prev. Slide
3. Even(2) A Primeish(2) Alntro: 1, 2
4. 3Tx (Even(x) A Primeish(x)) 3 Intro: 3



Ugh...so much work

Predicate Definitions

Even(x)=3y(x = 2y)
frimeish(x)s YaVvb (((a <bAab=x)->(a=1Ab= x)))

Note that 2 = 2*1 by definition of multiplication. It follows that there is a
y such that 2 = 2y; so, two is even.

Consider two arbitrary non-negative integers a, b.

Suppose a < b and ab = 2. Note that when b > 2, the product is always
greater than 2. Furthermore, a <b. So, the only solution to the equation
isa=1land b=2. So,a=1andb = 2.

Since a and b were arbitrary, it follows that 2 is primeish.

Since 2 is even and primeish, there exists a number that is even and
primeish.

This is the same proof, but infinitely easier to read and write....



