ÇF

Foundations of Computing I

Digital Circuits

Computing With Logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

And Gate

AND Connective vs.
 AND Gate

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

$\longrightarrow p$		
p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0

"block looks like D of AND"

Or Gate

OR Connective
 vs.
 OR Gate

$\boldsymbol{p} \vee \mathbf{q}$		
\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$
T	T	T
T	F	T
F	T	T
F	F	F

$\left.\begin{array}{c}p \\ q\end{array}\right)$ OR- OUT		
p	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0

"arrowhead block looks like V"

Not Gates

NOT Connective vs.
$\neg \boldsymbol{p}$

\boldsymbol{p}	$\neg \boldsymbol{p}$
T	F
F	T

NOT Gate

p	OUT
1	0
0	1

Also called inverter

Blobs are Okay!

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

Values get sent along wires connecting gates

Combinational Logic Circuits

Values get sent along wires connecting gates

Combinational Logic Circuits

Wires can send one value to multiple gates!

$$
(p \wedge \neg q) \vee(\neg q \wedge r)
$$

Administrivia

- Extra Credit: Included post-grades-calculation
- Tokens: Redos for WRITTEN questions
- Lying TAs approach!
- Come to my office hours $:$

Some Familiar Properties of Arithmetic

What are there logical versions of these rules?

- $x+y=y+x$
$x \vee y \equiv y \vee x$
$x \sim y=y \operatorname{cox}$
- $x \cdot(y+z)=x \cdot y+x \cdot z$
$x+(y \cdot z) \stackrel{?}{\stackrel{?}{?}}(x+y)(x+z)$
- $(x+y)+z=x+(y+z) \quad$ (Associativity)
(Distributivity)

Some Familiar Properties of Arithmetic

What are there logical versions of these rules?

- $x+y=y+x$
(Commutativity)
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- $x \cdot(y+z)=x \cdot y+x \cdot z$
(Distributivity)
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- $(x+y)+z=x+(y+z) \quad$ (Associativity)
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$

Properties of Logical Connectives

We will always give you this list!

- Identity

$$
\begin{aligned}
& -p \wedge \mathrm{~T} \equiv p \\
& -p \vee \mathrm{~F} \equiv p
\end{aligned}
$$

- Domination

$$
\begin{aligned}
& -p \vee \mathrm{~T} \equiv \mathrm{~T} \\
& -p \wedge \mathrm{~F} \equiv \mathrm{~F}
\end{aligned}
$$

- Idempotent
- $p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative

$$
\begin{aligned}
& -(p \vee q) \vee r \equiv p \vee(q \vee r) \\
& -(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
\end{aligned}
$$

- Distributive

$$
\begin{aligned}
& -p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& -p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& -p \vee(p \wedge q) \equiv p \\
& -p \wedge(p \vee q) \equiv p
\end{aligned}
$$

- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

Understanding Connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
- Simplification
- Testing for equivalence
- Applications
- Query optimization
- Search optimization and caching
- Artificial Intelligence
- Program verification

CSE 311: Foundations of Computing

Lecture 3: More Equivalence \& Boolean Algebra

THREE LOGICIANS WALK INTO A BAR...

Computing Equivalence

Given two propositions, can we write an algorithm to determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are n atomic propositions, there are 2^{n} rows in the truth table.

Logical Proofs

To show A is equivalent to B :

Apply a series of logical equivalences to sub-expressions to convert A to B

Example:
Let A be " $p \vee(p \vee p)$ ", and B be " p ".
idemp: $p=p v r$
Our general proof looks like:

$$
\begin{aligned}
p \vee(p \vee p) & \equiv(p \vee p) & (\beta \zeta & \left(d_{\text {ep. }}\right) \\
& \equiv p & & \left(\beta \nu \quad\left(d_{m p}\right)\right.
\end{aligned}
$$

Logical Proofs

To show A is equivalent to B :

Apply a series of logical equivalences to sub-expressions to convert A to B

Example:
Let A be " $p \vee(p \vee p)$ ", and B be " p ".
Our general proof looks like:

$$
\begin{aligned}
p \vee(p \vee p) & \equiv(\quad p \vee p &) & \text { By Idempotency } \\
& \equiv p & & \text { By Idempotency }
\end{aligned}
$$

Logical Proofs

To show A is a Tautology:

Apply a series of logical equivalences to sub-expressions to convert P to T .

Example:
Let A ce " $\neg p \vee(p \vee p) "$.
Our general proof looks like:

$$
\begin{array}{rlrl}
\rho & p \vee(p \vee p) & \equiv(9 r \vee p) \quad B y \quad \text { idem. } \\
& \equiv \mathbf{T} & B y \text { neg }
\end{array}
$$

Logical Proofs

To show A is a Tautology:

Apply a series of logical equivalences to sub-expressions to convert P to T .

Example:
Let A be " $\neg p \vee(p \vee p)$ ".
Our general proof looks like:

$$
\begin{array}{rlrl}
\neg p \vee(p \vee p) & \equiv(& \neg p \vee p &) \\
& \equiv \mathbf{T y} \text { Idempotency } \\
& & \text { By Negation }
\end{array}
$$

Prove this is a Tautology: Option 1

$$
(p \wedge q) \rightarrow(p \vee q)
$$

Make a Truth Table and show:

$$
(p \wedge q) \rightarrow(p \vee q) \equiv \mathbf{T}
$$

\boldsymbol{p}	\boldsymbol{q}	$p \wedge \boldsymbol{q}$	$p \boldsymbol{v} \boldsymbol{q}$	$(p \wedge \boldsymbol{q}) \rightarrow(p \vee \boldsymbol{q})$
T	T	T	T	T
T	F	F	T	T
F	T	F	T	T
F	F	F	F	T

Prove this is a Tautology: Option 2

$$
(p \wedge q) \rightarrow(p \vee q)
$$

Use a series of equivalences like so:

$$
\begin{aligned}
(p \wedge q) \rightarrow(p \vee q) & \equiv \neg(p \wedge q) \vee(p \vee q) \\
& \equiv(\neg p \vee \neg q) \vee(p \vee q) \\
& \equiv \neg p \vee(\neg q \vee(p \vee q)) \\
& \equiv \neg p \vee(\neg q \vee(q \vee p)) \\
& \equiv \neg p \vee((\neg q \vee q) \vee p) \\
& \equiv \neg p \vee(q \vee \neg q) \vee p) \\
& \equiv \neg p \vee(\mathbf{T} \vee p) \\
& \equiv \neg p \vee(p \vee \mathbf{T}) \\
& \equiv \neg p \vee \mathbf{T} \\
& \equiv \mathbf{T}
\end{aligned}
$$

By Law of Implication
By DeMorgan's Laws
By Associativity
By Commutativity
By Associativity
By Commutativity
By Negation
By Commutativity
By Domination
By Domination

Prove these propositions are equivalent

$$
\text { Prove: } p \wedge(p \rightarrow q) \equiv p \wedge q
$$

$$
\begin{aligned}
p \wedge(p \rightarrow q) & \equiv p \wedge(\neg p \vee q) \\
& \equiv(p \wedge \neg p) \vee(p \wedge q) \\
& \equiv \mathbf{F} \vee(p \wedge q) \\
& \equiv(p \wedge q) \vee \mathbf{F} \\
& \equiv p \wedge q
\end{aligned}
$$

By Law of Implication
By Distributivity
By Negation
By Commutativity
By Identity

Dr o (
 Prove these are not equivalent
 $$
\longmapsto \rightarrow(T \rightarrow F)
$$
 $$
(p \rightarrow q) \rightarrow r \quad, \quad p \rightarrow(q \rightarrow r)
$$
 Consider: p is $\stackrel{\vec{r}}{ }, \mathrm{q}$ is ${ }_{-}^{\Gamma}$, and r is $\underset{\underline{\xi} \ldots}{\underline{\xi}}$

Prove these are not equivalent

$$
(p \rightarrow q) \rightarrow r \quad p \rightarrow(q \rightarrow r)
$$

Consider: p is F, q is F, and r is F...

$$
\begin{aligned}
(F \rightarrow F) \rightarrow F & \equiv T \rightarrow F \\
& \equiv F
\end{aligned}
$$

$$
\begin{aligned}
F \rightarrow(F \rightarrow F) & \equiv F \rightarrow F \\
& \equiv T
\end{aligned}
$$

Boolean Logic

Combinational Logic

- output = F(input)

Sequential Logic

- output $_{t}=F\left(\right.$ output $_{t-1}$, input $\left._{t}\right)$
- output dependent on history
- concept of a time step (clock, t)

Boolean Algebra consists of...

- a set of elements $B=\{0,1\}$
- binary operations $\{+, \cdot\}$ (OR, AND) $p+q$
- and a unary operation \{ '\} (NOT)

Combinational Logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by truth table

A Combinational Logic Example

Sessions of Class:
We would like to compute the number of lectures or quiz sections remaining at the start of a given day of the week.

- Inputs: Day of the Week, Lecture/Section flag
- Output: Number of sessions left
$\begin{array}{ll}\text { Examples: [hput: (Wednesday, Lecture) } & \\ & \text { Output: } 2 \\ \text { Input: (Monday, Section) } & \text { Output: } 1\end{array}$

Implementation in Software

```
public int classesLeftInMorning(weekday, lecture_flag) {
    switch (weekday) {
        case SUNDAY:
        case MONDAY:
        return lecture_flag ? 3 : 1;
    case TUESDAY:
    case WEDNESDAY:
        return lecture_flag ? 2 : 1;
    case THURSDAY:
        return lecture_flag ? 1 : 1;
    case FRIDAY:
        return lecture_flag ? 1 : 0;
    case SATURDAY:
        return lecture_flag ? 0 : 0;
    }
}
```


Implementation with Combinational Logic

Encoding:

- How many bits for each input/output?
- Binary number for weekday
- One bit for each possible output

Defining Our Inputs!

Weekday Input:

- Binary number for weekday
- Sunday = 0, Monday = 1, ...
- We care about these in binary:

Weekday	Number		
Sunday	0	$(000)_{2}$	
Monday	1	$(001)_{2}$	
Tuesday	2	$(010)_{2}$	
Wednesday	3	$(011)_{2}$	
Thursday	4	$(100)_{2}$	
Friday	5	6	$(10)_{2}$
Saturday	6	$(110)_{2}$	

Converting to a Truth Table!

	Weekday		Lecture=0	C_{0}	C_{1}	C_{2}	C_{3}
return lecture_flag ? 3 : 1;	SUN	000	(0)			\bigcirc	
case TUESDAY or WEDNESDAY: return lecture flag ? 2 : 1;	\longrightarrow SUN	000	1		1	0	0
case THURSDAY:	MON	001	0				
return lecture_flag ? 1 : 1;	MON	001	1				
return lecture flag ? 1 : 0 ;	TUE	010	0				
case SATURDAY:	TUE	010	1				
return lecture_flag ? 0.0,	WED	011	0				
	WED	011	1				
	thu	100	-				
	FRI	101	0				
	FRI	101	1				
	SAT	110	-				
	-	111	-				

