Logical Equivalences Reference Sheet

Identity	Domination
$p\wedgeT\equiv p$	$p \lor T \equiv T$
$p \vee F \equiv p$	$p\wedgeF\equivF$

Idempotency		
	$p \lor p \equiv p$	
	$p \wedge p \equiv p$	

Commutativity	
$p \lor q \equiv q \lor p$	
$p \wedge q \equiv q \wedge p$	

Associativity	Distributivity
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Absorption

 $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Negation		
	$p \vee \neg p \equiv T$	
	$p\wedge\neg p\equivF$	

DeMorgan's Laws $\neg(p \lor q) \equiv \neg p \land \neg q$ $\neg(p \land q) \equiv \neg p \lor \neg q$

Double Negation $\neg \neg p \equiv p$

Law of ImplicationContrapositive $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Boolean Algebra Axioms (and Some Theorems)

Axioms

Closure	Commutativity
$a+b$ is in ${\mathbb B}$	a+b=b+a
$a ullet b$ is in ${\mathbb B}$	a ullet b = b ullet a
Associativity	Identity
a + (b + c) = (a + b) + c	a + 0 = a
$a \bullet (b \bullet c) = (a \bullet b) \bullet c$	$a \bullet 1 = a$
Distributivity	Complementarity
$a + (b \bullet c) = (a + b) \bullet (a + c)$	a + a' = 1
$a \bullet (b+c) = (a \bullet b) + (a \bullet c)$	a ullet a' = 0
The	POREMS
X + 1 - 1	$X \pm Y = X$
$\begin{array}{c} X + 1 = 1 \\ X \bullet 0 = 0 \end{array}$	$\begin{array}{c} X + X = X \\ X \bullet X = X \end{array}$
Involution	Uniting
(Y')' - Y	$X \bullet Y + X \bullet Y' = X$
$(\Lambda) = \Lambda$	$(X+Y) \bullet (X+Y') = X$
Absorbtion	
$X + X \bullet Y = X$	DeMorgan
$(X+Y') \bullet Y = X \bullet Y$	$(X+Y+\cdots)'=X'\bullet Y'\bullet\cdots$
$X \bullet (X + Y) = X$	$(X \bullet Y \bullet \cdots)' = X' + Y' + \cdots$
$(X \bullet Y') + Y = X + Y$	
Consensus	

onsensus

	$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$
($(X+Y) \bullet (Y+Z) \bullet (X'+Z) = (X+Y) \bullet (X'+Z)$

Factoring

$$(X+Y) \bullet (X'+Z) = X \bullet Z + X' \bullet Y$$
$$X \bullet Y + X' \bullet Z = (X+Z) \bullet (X'+Y)$$

Axioms & Inference Rules

Direct Proof	Modus Ponens
$\frac{A \Rightarrow B}{\therefore A \to B}$	$\begin{array}{ccc} A & A \to B \\ \hline \vdots & B \end{array}$

Intro \wedge	Elim \wedge
$\frac{A B}{\therefore A \wedge B}$	$\frac{A \wedge B}{\therefore A B}$

Intro \lor	Elim \lor
$\frac{A}{\therefore A \lor B B \lor A}$	$\begin{array}{c c} A \lor B & \neg A \\ \hline \vdots & B \end{array}$

Intro \forall	$\mathbf{Elim} \ \forall$
$\begin{array}{c c} & \text{Let } a \text{ be an arbitrary} \dots \\ \hline & \ddots & \forall x \ P(x) \end{array}$	$\frac{\forall x \ P(x)}{\therefore \ P(a) \text{ for any } a}$

Intro ∃	Elim \exists
$\begin{array}{c} P(c) \text{ for some } c \\ \hline \therefore \exists x \ P(x) \end{array}$	$\frac{\exists x \ P(x)}{\therefore \ P(c) \text{ for some } special \ c}$

Set Definitions

Common Sets

- $\mathbb{N} = \{0, 1, 2, \dots\}$ is the set of *Natural Numbers*.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of *Integers*.
- $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \right\}$ is the set of *Rational Numbers*.
- \mathbb{R} is the set of *Real Numbers*.

Containment, Equality, and Subsets

Let A, B be sets. Then:

- $x \in A$ ("x is an *element* of A") means that x is an element of A.
- $x \notin A$ ("x is not an element of A") means that x is not an element of A.
- $A \subseteq B$ ("A is a subset of B") means that all the elements of A are also in B.
- $A \supseteq B$ ("A is a superset of B") means that all the elements of B are also in A.
- $(A = B) \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x \ (x \in A \leftrightarrow x \in B)$

Set Operations

Let A, B be sets. Then:

- $A \cup B$ is the union of A and B. $A \cup B = \{x : x \in A \lor x \in B\}.$
- $A \cap B$ is the intersection of A and B. $A \cap B = \{x : x \in A \land x \in B\}.$
- $A \setminus B$ is the *difference* of A and B. $A \setminus B = \{x : x \in A \land x \notin B\}.$
- $A \oplus B$ is the symmetric difference of A and B. $A \oplus B = \{x : x \in A \oplus x \in B\}.$
- A is the complement of A. If we restrict ourselves to a "universal set", U, (a set of all possible things we're discussing), then A = {x ∈ U : x ∉ A}.

Set Constructions

Let A, B, C, D be sets. Then:

- $S = \{x : P(x)\}$ is set comprehension notation which means S is a set that contains all objects x with property P.
- $A \times B$ is the cartesian product of A and B. $A \times B = \{(a, b) : a \in A, b \in B\}$.
- [n] ("brackets n") is the set of natural numbers from 1 to n. $[n] = \{x \in \mathbb{N} : 1 \le x \le n\}$.
- $\mathcal{P}(A)$ is the *power set* of A. $\mathcal{P}(A) = \{S : S \subseteq A\}.$