Proof Techniques

What Is This?

Each of the following is as close as we can get to giving you a template (and a completely worked out example) for every proof technique we will discuss this quarter.

However, there is a large **WARNING** associated with these templates! It might be tempting to memorize the structure(s) of these templates rather than learn what they mean well enough to duplicate them on your own. **DON'T DO IT**!!! These are meant as a way to help you ease into proof writing as we introduce more and more complicated strategies. There isn't (and will never be) an algorithm or formula for writing proofs.

Contents

1	Direct Proofs 2 1.1 Technique Outlines 2 1.2 Example 2
2	Implication Proofs 3 2.1 Technique Outlines 3 2.2 Examples 4
3	Contradiction Proofs53.1 Technique Outlines53.2 Example5
4	Set Proofs 6 4.1 Technique Outlines 6 4.2 Example 7
5	Induction Proofs85.1 Technique Outlines85.2 Example9
6	Strong Induction Proofs 10 6.1 Technique Outline 10 6.2 Example 11
7	Structural Induction Proofs137.1 Technique Outline137.2 Example13
8	Irregularity Proofs148.1 Technique Outline148.2 Example14
9	Diagonalization Proofs159.1 Technique Outline159.2 Example15

1 Direct Proofs

1.1 Technique Outlines

Proving a \forall Statement		
Prove $\forall x \ P(x)$.	Prove $\forall x \ (x = 5 \lor x \neq 5).$	
Let x be arbitrary.	Let x be arbitrary.	
Now, x represents an arbitrary element, and we can just use it. Prove $P(x)$ by some other strategy.	Note that by the law of excluded middle, $x = 5$ or $x \neq 5$.	
Since x was arbitrary, the claim is true.	Since x was arbitrary, the claim is true.	

Proving an \exists Statement		
Prove $\exists x \ P(x)$.	Prove $\exists x \text{ Even}(x)$.	
[Find an x for which $P(x)$ is true. This is not actually part of the proof, but it's necessary to continue.] Let $x =$ expression that satisfies $P(x)$.	[We can choose any even number here. We'll go with 2, because it's simplest.] Let $x = 2$.	
Now, explain why $P(x)$ is true.	Note that 2 is even, by definition, because $2 \times 1 = 2$.	
Since $P(x)$ is true, the claim is true.	Since 2 is even, the claim is true.	

Disproving a Statement		
Disprove $P(x)$.	Disprove Odd(4).	
We show that $P(x)$ is false by proving its negation:	We show that 4 is not odd by showing it's even.	
the negation of $P(x)$.	Note that 4 is even, by definition, because $2 \times$	
Prove $\neg P(x)$ using some other proof strategy.	2 = 4.	
Since $\neg P(x)$ is true, $P(x)$ is false.	Since 4 is even, it is not odd.	

1.2 Example

Prove $\forall x \; \forall y \; \exists z \; (zx = y)$	Domain: Non-Zero Reals
Proof: Let x and y be arbitrary. Choose $z = \frac{y}{x}$. Note that $x \times \frac{y}{x} = y$. we've found a z (yx) such that the claim is true.	This is valid, because $x \neq 0$. Thus,
Commontony We started off the proof with "Let a and a he arbitrary"	' This is as that the claim works for

Commentary: We started off the proof with "Let x and y be arbitrary". This is so that the claim works for any x and y we are provided. We're not allowed to assume anything special about x or y, but if we use them as if they are any particular number, the claim will be true for any x and y.

The "choose" line is used to prove the existential quantifier by pointing out a value that works. We have to follow that up with a justification of *why* the choice we made works.

The last line just sums up what we've done.

2 Implication Proofs

2.1 Technique Outlines

Proving an \rightarrow (Directly)		
$Prove A \to B.$	Prove that if $x \leq 4$ is an even, positive integer, then	
Suppose A is true.	it's a power of two.	
	Suppose $x \leq 4$ is even, positive integer.	
Prove B using the additional assumption that A is true.	Since x is a positive integer, $x > 0$. Furthermore, since $x \le 4$, it must be that $x = 2$ or $x = 4$. Note that $2 = 2^1$ and $4 = 2^2$; so, both possibilities are powers of two.	
It follows that B is true. Therefore, $A \rightarrow B$.	It follows that x must be a power of two. So, if x is an even positive integer at most four, then x is a power of two.	

$\begin{array}{c} Proving an \rightarrow (Contrapositive) \end{array}$		
Prove $A \rightarrow B$.	Prove that if $x^2 - 6x + 9 \neq 0$, then $x \neq 3$.	
We go by contrapositive. Suppose $\neg B$ is true.	We go by contrapositive. Suppose $x = 3$.	
Prove $\neg A$ using the additional assumption that $\neg B$ is true.	Then, $x^2 - 6x + 9 = 3^2 - 6 \times 3 + 9 = 0.$	
So, $\neg A$ is true. Therefore, $A \rightarrow B$.	So, $x^2 - 6x + 9 = 0$. Thus, if $x^2 - 6x + 9 \neq 0$, then $x \neq 3$.	

2.2 Examples

Prove $\forall x \; \forall y \; ((x+y=1) \rightarrow (xy=0))$	Domain: Non-negative Integers
Proof: Let x and y be arbitrary non-negative integers.	
We prove the implication by contrapositive. Suppose $xy \neq 0$. Then, it must be the case that neither x nor y is zero, because $0 \times a = 0$ for any a . So, $x > 0$ and $y > 0$, which is the same as $x \ge 1$ and $y \ge 1$.	
Adding inequalities together, we see that $x + y \ge 2$. It follows that $x + y > 1$ which means $x + y \ne 1$ which is what we were trying to show.	
So, the original claim is true.	
Commentary: The hardest thing about proof by contrapositive is to understand when to use it. There are two "clear" situations to try it in:	
(1) If there are a lot of negations in the statement. (See t Contrapositive adds a bunch of negations into each part already a lot of them, it removes them!	
(2) If you try the direct proof and get stuck (or feel like you common mistake is to use proof by contradiction when a clear!	, , ,

Prove $\forall x \; \forall y \; ((x < y) \rightarrow (\exists z \; x < z \land z < y))$

Domain: Rationals

Proof: Let x, y be arbitrary rational numbers such that x < y.

Since x, y are both rational, we have $x = \frac{p_x}{q_x}$ and $y = \frac{p_y}{q_y}$ for integers p_x, q_x, p_y, q_y such that $q_x \neq 0$ and $q_y \neq 0$.

Suppose for contradiction that there are no rationals between x and y. Note that $x \neq y$; so, it cannot be the case that $p_x = p_y$ and $q_x = q_y$.

Define
$$z = \frac{p_z}{q_z} = \frac{\frac{p_x}{q_x} + \frac{p_y}{q_y}}{2} = \frac{\frac{p_x q_y}{q_x q_y} + \frac{p_y q_x}{q_x q_y}}{2} = \frac{p_x q_y + p_y q_x}{2q_x q_y}.$$

First, note that $p_xq_y + p_yq_x$ is an integer (because it's a linear combination of integers). Second, note that $2q_xq_y$ is a *non-zero* integer, because $q_x, q_y \neq 0$.

Furthermore, note that $\frac{p_z}{q_z}$ is the *average* of x and y. Since $x \neq y$, the average must be larger than x and less than y.

It follows that z is a rational number such that x < z < y, which is what we were trying to prove. So, the implication is true, as is the entire statement.

3 Contradiction Proofs

3.1 Technique Outlines

Proving a Statement By Contradiction		
Prove P.	Prove if a is a non-zero rational and b is irrational,	
Assume for the sake of contradiction that $\neg P$ is true.	then <i>ab</i> is irrational.	
Prove Q and prove $\neg Q$ for some Q by some other strategy using $\neg P$ as an assumption.	Suppose a is rational (and non-zero) and b is irrational. Now, assume for the sake of contradiction that ab is rational.	
However, Q and $\neg Q$ cannot both be true; so since the only assumption we made was $\neg P$, it must be the case that $\neg P$ is false. Then, P is true. Since x was arbitrary, the claim is true.	By definition of rational, we have $p, q \neq 0$ such that $ab = \frac{p}{q}$. Re-arranging the equation, we have $b = \frac{p}{aq}$. Note that this is valid because $a \neq 0$. Furthermore, we found numbers $p' = p$ and $q' = aq$ where $q' \neq 0$ (because $a, q \neq 0$.). So, it follows that b is rational! However, we know that b can't both be rational and irrational; so, our assumption (ab is rational) must be false. So, ab is irrational.	

3.2 Example

Prove $\forall x \ \left((x > 0) \rightarrow \left(x + \frac{1}{x} \ge 2 \right) \right)$	Domain: Reals
Proof: Let $x > 0$ be arbitrary.	
Suppose for contradiction that $x + \frac{1}{x} < 2$.	
Then, multiplying both sides by x, we have $(x^2+1 < 2x) \rightarrow (x^2-2x+1 < 0)$. Factoring give	s us $(x-1)^2 < 0$.
However, every square must be at least zero; so, this is a contradiction. It follows that $x + \frac{1}{x}$	

4 Set Proofs

4.1 Technique Outlines

Proving $S = T$		
Prove $S = T$.		
[If one of the sets has a complement in it, then make sure to define the universal set: $\mathcal{U}.$]		
Make incremental changes to the definition of the set via a series of equalities. The idea is to use the theorems we have for logic to prove things about the sets.		
Prove $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.		
$A \cap (B \cup C) = \{x : x \in (A \cap (B \cup C))\}$ $= \{x : x \in A \land x \in (B \cup C)\}$ $= \{x : x \in A \land (x \in B \lor x \in C)\}$ $= \{x : (x \in A \land x \in B) \lor (x \in A \land x \in C)\}$ $= \{x : (x \in A \cap A) \lor (x \in A \cap C)\}$	 [By definition of containment] [By definition of ∩] [By definition of ∪] [By distributivity of ∧, ∨] [By definition of ∩] 	
$= \{x : (x \in A \cap B) \lor (x \in A \cap C)\}$ $= \{x : x \in ((A \cap B) \cup (A \cap C))\}$ $= (A \cap B) \cup (A \cap C)$	[By definition of ∪] [By definition of containment]	

Proving $S \subseteq T$

Prove $S \subseteq T$.

Suppose $x \in S$.

Use some other proof strategy to show that $x \in T$. Usually, this is a series of implications that looks very much like proving S = T.

So, $x \in T$. Since all elements of S are also in T, it follows that $S \subseteq T$.

Prove $A \cap (B \cap C) \subseteq A \cup (B \cup C)$.

Suppose $x \in A \cap (B \cap C)$.

Then, by definition of intersection, $x \in A$, $x \in B$, and $x \in C$. Since x is contained in all three, we also have $x \in A \lor (x \in B \lor x \in C)$. So, by definition of union, we have $x \in A \cup (B \cup C)$.

It follows that $A \cap (B \cap C) \subseteq A \cup (B \cup C)$.

Proving S = T

Prove S = T.

We prove that $S \subseteq T$ and $T \subseteq S$ to show that S = T.

Prove $S \subseteq T$.

Prove $T \subseteq S$.

Since $S \subseteq T$ and $T \subseteq S$, S = T.

4.2 Example

Prove S = T

Let $S = \{x \in \mathbb{R} \mid x^2 > x + 6\}$ and $T = \{x \in \mathbb{R} \mid x > 3 \lor x < -2\}.$

Proof: To prove that S = T, we first prove that $S \subseteq T$, and then we prove that $T \subseteq S$. Let x be an arbitrary element of S. Then, it follows that $x \in \mathbb{R}$ and $x^2 > x + 6$. Using algebra, we can simplify this inequality to $x^2 - x - 6 > 0$. Factoring, we get (x - 3)(x + 2) > 0. Since (x - 3)(x + 2) is positive, it must either be the case that both factors are positive or both factors are negative.

Case I (Both are positive): Then, we have x - 3 > 0 and x + 2 > 0. Rearranging these equations, we see that x > 3 and x > -2. It follows that in this case, $x \in T$, because x > 3.

Case II (Both are negative): Then, we have x - 3 < 0 and x + 2 < 0. Rearranging these equations, we see that x < 3 and x < -2. It follows that in this case, $x \in T$, because x < -2.

Since in either case if $x \in S$, then $x \in T$, we have $S \subseteq T$. Now, we prove that $T \subseteq S$. Let $x \in T$. Then, either x > 3 or x < -2. We take this in two cases:

Case I (x > 3): If x > 3, then x - 3 > 0 and x + 2 > 0. It follows that (x - 3)(x + 2) > 0, because both factors are greater than 0. So, $x \in S$.

Case II (x < -2): If x < -2, then x + 2 < 0 and x - 3 < 0. It follows that (x - 3)(x + 2) > 0, because both factors are less than 0. So, $x \in S$.

Since in either case if $x \in T$, then $x \in S$, we have $T \subseteq S$. Since $S \subseteq T$ and $T \subseteq S$, we have S = T, which is what we were trying to prove.