CSE 311: Foundations of Computing I

Definitions and Theorems

What Is This?

This is a complete¹ listing of definitions and theorems relevant to CSE 311. The goal of this document is less as a reference and more as a way of indicating what is and is not allowed to be assumed in proofs.

Contents

1	Arith	metic	2
	1.1	Definitions	2
2	Equa	ity	2
	2.1	Definitions	2
	2.2	Givens	2
3	Ineq	alities	4
	3.1	Definitions	5
	3.2	Givens	5
4	Abso	ute Value	6
	4.1	Definitions	6
	4.2	Givens	6
5	Parit	,	6
	5.1	Definitions	6
	5.2	Theorems	7
6	Ratio	nals	8
	6.1	Definitions	8
	6.2	Theorems	8
7	Sets		8
	7.1	Definitions	8
	7.2	Theorems	9
8	Mod	Ilar Arithmetic	10
	8.1	Definitions	10
	8.2	Theorems	10
9	Prim	25	11
	9.1	Definitions	11
	9.2	Theorems	11
10	GCD		12
	10.1	Definitions	12
	10.2	Theorems	12

¹It's not actually complete. It's probably missing a lot. If you find an error or a missing theorem, please let us know! We will give you a rubber ducky.

1 Arithmetic

This section is all about arithmetic. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

1.1 Definitions

Arithmetic Expression of Real Numbers

An arithmetic expression of real numbers is an expression made up of real numbers, variables representing real numbers, addition, multiplication, subtraction, division, exponentiation, and logarithms.

DEFINITION

CONSTANT

CONSTANT

GIVEN

Zero

Zero (0, the additive identity) is the constant real number such that for any arithmetic expression X, 0 + X = X = X + 0.

One

```
One (1, the multiplicative identity) is the constant real number such that for any arithmetic expression X, 1 \cdot X = X = X \cdot 1.
```

2 Equality

This section is all about equalities. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

2.1 Definitions

Equality for Real Numbers	DEFINITION
If X and Y are two real numbers, then $X = Y$ ("X equals Y") when both expressions "evaluate	" to the
same real number.	
(This means you should use what you learned in high school about these types of expressions.)	

Inequality for Real Numbers	DEFINITION
If X and Y are two real numbers, then $X \neq Y$ ("X does not equal Y") when $\neg(X = Y)$.	

2.2 Givens

Reflexivity of Equality for Real Numbers	GIVEN
If x is a real number, then $x = x$.	

Symmetry	of Equa	lity for	Real	Numbers
----------	---------	----------	------	---------

If x, y are real numbers, then $x = y \leftrightarrow y = x$.

Transitivity of Equality for Real Numbers	GIVEN
If x, y, and z are real numbers, then $(x = y \land y = z) \rightarrow x = z$.	

Identities for Real Numbers

If x is a real number, then:

- x + 0 = x = 0 + x
- $x \cdot 1 = x = 1 \cdot x$
- $x^0 = 1$ (unless x evaluates to 0, in which case x^0 is undefined)
- $0^x = 0$ (unless x evaluates to 0, in which case 0^x is undefined)
- $1^x = 1$
- x/1 = x

Domination for Real Numbers

If x is a real number, then:

- $x \cdot 0 = 0 = 0 \cdot x$
- $x \cdot 1 = x = 1 \cdot x$

Inverse Operations for Real Numbers

If a and b are real numbers, then:

- a-b=a+(-b)
- $a \cdot \frac{b}{a} = b$

Inverses for Real Numbers

If x and b are real numbers, then:

- x + (-x) = 0 = (-x) + x
- $x \cdot \frac{1}{x} = 1 = \frac{1}{x} \cdot x$ (unless x evaluates to 0)
- $b^{\log_b(x)} = x$
- $\log_b(b^x) = x$
- -(-x) = x

Associativity of Arithmetic Expressions

If x, y, and z are real numbers, then: • (x+y) + z = x + (y+z)• (xy)z = x(yz)

As a consequence, we can omit the parentheses in these expressions.

Commutativity of Arithmetic Expressions

If x and y are real numbers, then:

•
$$x + y = y + x$$

•
$$xy = yx$$

3

GIVEN

GIVEN

GIVEN

GIVEN

GIVEN

GIVEN

Distributivity of Arithmetic Expressions

If a, b, c, and d are real numbers, then:

- a(b+c) = ab + ac
- (a+b)(c+d) = ac + ad + bc + bd

Algebraic Properties of Real Numbers

If a, b, c, and d are real numbers, then:

- $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$
- $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$
- $(a^b)(a^c) = a^{b+c}$
- $(a^b)^c = a^{bc}$
- $\log_c(ab) = \log_c(a) + \log_c(b)$
- $\log_c\left(\frac{a}{b}\right) = \log_c(a) \log_c(b)$

Adding Equalities

If a and b are real numbers, a = b, and c = d, then a + c = b + d.

Multiplying Equalities

If a and b are real numbers, a = b, and c = d, then ac = bd.

Dividing Equalities

If a and b are real numbers, a = b, and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$

Subtracting Equalities

If a and b are real numbers, a = b, and c = d, then a - c = b - d.

Raising Equalities To A Power

If a and b are real numbers and a = b, then $a^c = b^c$.

Log Change-Of-Base Formula	GIVEN
If x, a, and b are real numbers, $x, a, b > 0, a \neq 1, b \neq 1$, then $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$	

3 Inequalities

This section is all about inequalities. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

GIVEN

GIVEN

GIVEN

GIVEN

GIVEN

GIVEN

GIVEN

Definitions 3.1

Less-Than for Real Numbers If x and y are two real numbers, then x < y ("x is less than y") when x "evaluates" to a smaller real number than y evaluates to.

(This means, use what you learned in high school about these types of expressions.)

Greater-Than for Real Numbers

If x and y are two real numbers, then x > y ("x is greater than y") when y < x.

Less-Than-Or-Equal-To for Real Numbers

If x and y are two real numbers, then $x \leq y$ ("x is less than or equal to y") when $\neg(x > y)$.

Greater-Than-Or-Equal-To for Real Numbers DEFINITION If x and y are two real numbers, then $x \ge y$ ("x is greater than or equal to y") when $\neg(x < y)$.

3.2 Givens

Trichotomy for Real Numbers GIVEN If x and y are two real numbers, then $x = y \lor x < y \lor x > y$.

Antisymmetry of Inequality for Real Numbers	GIVEN
If x, y are real numbers, then $(x \le y \land y \le x) \to x = y$.	

Transitivity of Inequality for Real Numbers	GIVEN
If x , y , and z are real numbers, then $(x < y \land y < z) \rightarrow x < z$.	

Adding Inequalities

If a and b are real numbers, a < b and c < d, then a + c < b + d.

Subtracting Inequalities

If a and b are real numbers and a < b and c > d, then a - c < b - d.

Multiplying (Positive) Inequalities If a and b are real numbers, 0 < a < b and 0 < c < d, then 0 < ac < bd.

Multiplying (Negative) Inequalities If a and b are real numbers, a < 0, and b < 0, then ab > 0.

Inverting Inequalities	GIVEN
If a and b are real numbers and $0 < a < b$, then $\frac{1}{a} > \frac{1}{b} > 0$.	

5

GIVEN

GIVEN

GIVEN

GIVEN

DEFINITION

DEFINITION

DEFINITION

Same Sign

GIVEN

If a and b are real numbers and ab > 0, then a and b are both positive or a and b are both negative.

Squares Are Positive	GIVEN
If a is a real number, then $a^2 \ge 0$.	

4 Absolute Value

This section is all about absolute values. In general, we don't care much about absolute values, but they're something easy to prove things about. So, we list out a bunch of givens you may use here.

4.1 Definitions

Absolute Value		DEFINITION
If x is a real number, then		
	$ \mathbf{Y} = \int X$ if $X \ge 0$	
	$ X = \begin{cases} -X & \text{if } X < 0 \end{cases}$	

4.2 Givens

Absolute Value Magnitude	GIVEN
If x and M are real numbers and $M \ge 0$, then $ x \le M \leftrightarrow -M \le x \le M$.	

Positive Definite	GIVEN
If x is a real number, then $ x \ge 0$ and $ x = 0 \leftrightarrow x = 0$.	

Multiplying Absolute Values	GIVEN
If x and y are real numbers, then $ xy = x y $	
Triangle Inequality	GIVEN

I riangle Inequality	GIVEN
If x and y are real numbers, then $ x + y \le x + y $.	

5 Parity

This section is all about parity (even-ness/odd-ness) of integers. Unlike all the previous sections, we will use this as a starting point for discussing proofs. This means that you may *only* assume what is written here explicitly and nothing more.

5.1 Definitions

Even	DEFINITION
An integer n is <i>even</i> iff $\exists k \ (n = 2k)$	

An integer n is odd iff $\exists k \ (n = 2k + 1)$

Perfect Square

An integer n is a *perfect square* iff there exists an integer x for which $n = x^2$.

Closure Under *	DEFINITION
A set S is <i>closed</i> under a binary operation \star iff $x \star x$ is an element of S.	

5.2 Theorems

${\mathbb Z}$ is closed under $+$	Theorem
The integers are closed under addition.	

 ${\mathbb Z}$ is closed under imes

The integers are closed under multiplication.

The square of every even integer is even

If n is even, then n^2 is even.

The square of every odd number is odd	Theorem
If n is odd, then n^2 is odd.	

The sum of two odd numbers is even

If n and m are odd, then n + m is even.

No even number is the largest even number	Theorem
For all even numbers n , there exists a larger even number m .	

${\mathbb Z}$ is closed under –

The integers are closed under subtraction.

${\mathbb Z}$ is not closed under /

The integers are *not* closed under division.

No Integer is Odd and Even

If \boldsymbol{n} is an integer, \boldsymbol{n} is not both odd and even.

Every Integer is Odd or Even	Theorem
If n is an integer, n is even or odd.	

DEFINITION

DEFINITION

Theorem

Theorem

Theorem

THEOREM

Theorem

Theorem

6 Rationals

This section is all about rational numbers. We also use proofs about rational numbers as a starting point for discussing proofs. This means that you may *only* assume what is written here explicitly and nothing more.

6.1 Definitions

Rational	DEFINITION
An real number x is rational iff there are two integers p and $q \neq 0$ such that $x = \frac{p}{q}$.	

6.2 Theorems

${\mathbb Q}$ is closed under $ imes$	Theorem
The rationals are closed under multiplication	

$\mathbb{R}\setminus\mathbb{Q}$ is not closed under $+$	Theorem
The irrationals are not closed under addition.	

7 Sets

7.1 Definitions

The Set of Natural Numbers	Definition
$\mathbb{N} = \{0, 1, 2, \dots\}$ is the set of <i>Natural Numbers</i>	

The Set of Integers	Definition
$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of <i>Integers</i> .	

The Set of Rationals	Definition
$\mathbb{Q} = \left\{ rac{p}{q} \ : \ p,q \in \mathbb{Z} \land q eq 0 ight\}$ is the set of <i>Rational Numbers</i> .	

The Set of Reals	Definition
${\mathbb R}$ is the set of <i>Real Numbers</i> .	

Set Inclusion

If A and B are sets, then $x \in A$ ("x is an *element* of A") means that x is an element of A, and $x \notin A$ ("x is *not* an *element* of A") means that x is *not* an element of A.

DEFINITION

DEFINITION

Set Equality

If A and B are sets, then A = B iff $\forall x \ (x \in A \leftrightarrow x \in B)$.

Subset and Superset

If A and B are sets, then $A \subseteq B$ ("A is a *subset* of B") means that all the elements of A are also in B, and $A \supseteq B$ ("A is a *superset* of B") means that all the elements of B are also in A.

Set Comprehension

If P(x) is a predicate, then $\{x : P(x)\}$ is the set of all elements for which P(x) is true. Also, if S is a set, then $\{x \in S : P(x)\}$ is the subset of all elements of S for which P(x) is true.

Set Union

If A and B are sets, then $A \cup B$ is the union of A and B. $A \cup B = \{x : x \in A \lor x \in B\}.$

Set Intersection

- If A and B are sets, then $A \cap B$ is the *intersection* of A and B. $A \cap B = \{x : x \in A \land x \in B\}.$
- Set Difference If A and B are sets, then $A \setminus B$ is the *difference* of A and B. $A \setminus B = \{x : x \in A \land x \notin B\}.$

Set Symmetric Difference DEFINITION If A and B are sets, then $A \oplus B$ is the symmetric difference of A and B. $A \oplus B = \{x : x \in A \oplus x \in B\}$.

Set Complement

If A is a set, then \overline{A} is the *complement* of A. If we restrict ourselves to a "universal set", \mathcal{U} (a set of all possible things we're discussing), then $\overline{A} = \{x \in \mathcal{U} : x \notin A\}$.

Brackets n		Definition
If $n \in \mathbb{N}$, then $[n]$ ("brackets	$\overline{n''}$ is the set of natural numbers from 1 to n . $[n] = \{$	$\overline{\{x \in \mathbb{N} : 1 < x < n\}}.$

Cartesian Product	DEFINITION
If A and B are sets, then $A \times B$ is the <i>cartesian product</i> of A and B . $A \times B = \{(a, b) : a \in A \}$	$A, b \in B$.

Powerset	Definition
If A is a set, then $\mathcal{P}(A)$ is the <i>power set</i> of A. $\mathcal{P}(A) = \{S : S \subseteq A\}.$	

7.2 Theorems

Subset Containment	Theorem
If A and B are sets, then $(A = B) \iff (A \subseteq B \land B \subseteq A)$.	

Russell's Paradox	THEOREM
The set of all sets that do not contain themselves does not exist. Tha	t is, $\{x \ : \ x \not\in x\}$ does not exist.

DEFINITION

DEFINITION

Definition

DEFINITION

DEFINITION

DEFINITION

DEFINITION

.

DeMorgan's Laws for Sets

If A and B are sets, then $\overline{A \cup B} = \overline{A} \cap \overline{B}$ and $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Distributivity for Sets

If A and B are sets, then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

$A \cap B \subseteq A$ If A and B are sets, then $A \cap B \subseteq A$.

8 Modular Arithmetic

8.1 Definitions

$a \mid b$ (" a divides b ")	DEFINITION
For $a, b \in \mathbb{Z}$, where $a \neq 0$:	$a \mid b \text{ iff } \exists (k \in \mathbb{Z}) \ b = ka$

$a \equiv b \pmod{m}$ ("a is congruent to b modulo m)		DEFINITION
For $a, b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$:	$a \equiv b \pmod{m}$ iff $m \mid (a - b)$	

8.2 Theorems

Division Theorem	Theorem
If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, then there exist unique $q, r \in \mathbb{Z}$, where $0 \le r < d$ such that $a = dq + r$.	
We call $q = a$ div d and $r = a \mod d$.	

Relation Between Mod and Congruences	Theorem
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $a \equiv b \pmod{m} \leftrightarrow a \mod m = b \mod m$.	

Adding Congruences	Theorem
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $(a \equiv b \pmod{m}) \land c \equiv d \pmod{m}) \rightarrow a + c \equiv b + d \pmod{m}$.	

Multiplying Congruences	Theorem
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $(a \equiv b \pmod{m} \land c \equiv d \pmod{m}) \to ac \equiv bd \pmod{m}$.	

If $n \in \mathbb{Z}$, then	$n^2 \equiv 0 \pmod{4}$	or $n^2 \equiv 1 \pmod{4}$.

Squares are congruent to $0 \text{ or } 1 \mod 4$

Additivity of mod	Theorem
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $(a + b) \mod m = ((a \mod m) + (b \mod m)) \mod m$	

10

Theorem

Theorem

Theorem

Theorem

Multiplicativity of mod

If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$

Base b Representation of Integers

uppose n is a positive integer (in base b) with exactly m digits.
m-1
Then, $n=\sum d_i b^i$, where d_i is a constant representing the i -th digit of $n.$
$i{=}0$

Raising Congruences To A Power Theorem If $a, b, i \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then $a \equiv b \pmod{m} \rightarrow a^i \equiv b^i \pmod{m}$.

9 Primes

Definitions 9.1

Factor	DEFINITION
A factor of an integer n is an integer f such that $\exists x \ (n = fx)$. Alternatively, f is a factor of n i	iff $f \mid n$.

Prime	Definition
A integer $p > 1$ is <i>prime</i> iff the only positive factors of p are 1 and p.	

Composite

A integer p > 1 is *composite* iff it's not prime. That is, an integer p > 1 is composite iff it has a factor other than 1 and p.

Trivial Factor	Definition
A <i>trivial factor</i> of an integer n is 1 or n .	We call it a "trivial factor", because all numbers have these factors.

Coprime / Relatively Prime Two integers, a and b, are coprime (or relatively prime) if the only positive integer that divides both of them is 1. That is, their prime factorizations don't share any primes.

9.2 Theorems

Fundamental Theorem of Arithmetic

Every natural number can be *uniquely* expressed as a product of primes raised to powers.

All Composite Numbers Have a Small Non-Trivial Factor

If n is a composite number, then it has a non-trivial factor $f \in \mathbb{N}$ where $f \leq \sqrt{n}$.

ΟN

DEFINITION

DEFINITION

Theorem

Theorem

Theorem

Theorem

Euclid's Theorem	Theorem
There are infinitely many primes.	

10 GCD

10.1 Definitions

GCD (Greatest Common Divisor)	DEFINITION
The gcd of two integers, a and b, is the largest integer d such that $d \mid a$ and $d \mid b$.	

	Euclidean Algorithm	Algorithm
1	gcd(a, b) {	
2	$if (b == 0) \{$	
3	return a;	
4	}	
5	else {	
6	<pre>return gcd(b, a mod b);</pre>	
7	}	
8	}	

10.2 Theorems

GCD Property	Theorem
For any $a, b \in \mathbb{Z}^+$, $gcd(a, b) = gcd(b, a \mod b)$.	

Index

=, 2, 8 €, **8** absolute value, 6 antisymmetry, 5 cartesian product, 9 closed, 7 closure, 7 complement, 9 composite, 11 congruence, 10 coprime, 11 demorgan, 10 difference, 9 distributivity, 10 divides, 10 division theorem, 10 euclidean algorithm, 12 even, 6 factor, 11 fundamental theorem of arithmetic, 11 gcd, 12 infinitely many primes, 12

intersection, 9 mod, **10** odd, 7 one, 2 positive definite, 6 powerset, 9 prime, 11 rational, 8 relatively prime, 11 russell's paradox, 9 square, 7 subset, 9 superset, 9 symmetric difference, 9 triangle inequality, 6 trichotomy, 5 trivial factor, 11 union, 9 universe, 9 zero, 2