Adam Blank Spring 2016

Foundations of
Computing |

* All slides are a combined effort between
previous instructors of the course

DFAs = Regular expressions

We have shown how to build an optimal DFA for every
regular expression

— Build NFA

— Convert NFA to DFA using subset construction

— Minimize resulting DFA

Theorem: A language is recognized by a DFA if and
only if it has a regular expression

The second direction will be completely untested. I'm
happy to discuss it with you at office hours, but we have
more important things to discuss today.

Exponential Blow-up in Simulating Nondeterminism

* In general the DFA might need a state for every
subset of states of the NFA
— Power set of the set of states of the NFA
— n-state NFA yields DFA with at most 2" states
— We saw an example where roughly 2" is necessary
Is the nt" char from the enda 1?

* The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid
of nondeterminism for polynomial-time
algorithms

CSE 311.: Foundations of Computing

Lecture 25: Limits of FSMs

\ SAD THRED BE
IRREGULARITNES

LWELL, (HERE'S ONE:

Languages and Machines!

Context-Free

Regular

Finite

{001, 10, 12}

Languages and Machines!

Context-Free

All finite
languages
are regular.

Regular

Finite

{001, 10, 12}

DFAs Recognize Any Finite Language

Construct DFAs for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

Context-Free

Warmup 2:
Surprising
example here

Regular

Finite

{001, 10, 12}

An Interesting Infinite Regular Language

L = {xe {0, 1}": x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, ...

L is regular.

The language of “Binary Palindromes” is Regular

Is it though?

Intuition (NOT A PROOF!):
Q: What would a DFA need to keep track of to decide the
language?
A: It would need to keep track of the “first part” of the input
in order to check the second part against it

...but there are an infinite # of possible first parts and we
only have finitely many states.

The language of “Binary Palindromes” is Context-Free

S—¢e]0]1]0S0 | 1s1

We good?

Languages and Machines!

Context-Free

Main Event:
Prove there is
a context-free
language
that isn’t
regular.

Finite

{001, 10, 12}

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— Our goal is to “confuse” M. That is, we want to show
it “does the wrong thing”.

How can a DFA be “wrong” or “broken”?

Just like the errors you were getting on the
homework, a DFA is “broken” when it accepts or
rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B
— Our goal is to “confuse” M. That is, we want to show

it “does-the-wrong-thing” accepts or rejects a string
it shouldn't.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B
— We want to show M accepts or rejects a string it
shouldn't.
Key Idea 1: If two strings “collide” at any point, an
FSM can no longer distinguish between them!

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it's possible.
— Therefore, some DFA (call it M) exists that accepts B

— We want to show M accepts or rejects a string it
shouldn’t.

Key Idea 1: If two strings “collide” at any point, an
FSM can no longer distinguish between them!

Key Idea 2: Our machine has a finite number of
states which means if we have infinitely many
strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— We want to show M accepts or rejects a string it
shouldn't.

— We choose an INFINITE set of “half strings” (which
we intend to complete later). It is imperative that
every string in our set have a DIFFERENT, SINGLE
“accept” completion.

0. 1 1 [0)

00. 10. 01 01

000. 100. 001 101

0000. 1000. 0001 0101.
00000. 10000, 00001, 10101

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1: n > 0}.

Key Ildea 2: Our machine has a finite number of states which means
if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1: n > 0}.

Since there are finitely many states and infinitely many strings
in S, there exists strings 0°1 € S and 0°1 €S that end in the
same state.

SUPER IMPORTANT POINT: You do not get to choose
what a and be are. Remember, we’ve proven they
exist...we have to take the ones we’re given!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S ={0"1:n > 0}.

Since there are finitely many states and infinitely many strings

in S, there exists strings 021 € S and 01 € S that end in the
same state.

Now, consider appending 02 to both strings.

Keyldea 1: If two strings “collide” at any point, an FSM can no
longer distinguish between them!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn't.
Consider S={0"1: n > 0}.

Since there are finitely many states and infinitely many
strings in S, there exists strings 021 € S and 0°1 € S that
end in the same state with a # b.

Now, consider appending 02 to both strings. Then, since
021 and 0°1 are in the same state, 02102 and 0°10? also
end in the same state. Since 02102 € B, this state must be
an accept state. But, then M accepts 0°10? ¢ B.

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S ={0"1:n > 0}.

Since there are finitely many states and infinitely many strings
in S, there exists strings 021 € S and 0°1 € S that end in the
same state witha # b.

Now, consider appending 02 to both strings. Then, since 071
and 0°1 are in the same state, 02102 and 0°102 also end in the
same state. Since 02107 € B, this state must be an accept

state. But, then M accepts 0°10? ¢ B.
01

This is a contradiction, because we assumed M accepts B.
Since M was arbitrary, there is no DFA that accepts B.

Showing a Language L is not regular

1. “Suppose for contradiction that some DFA M accepts L.”

2. Consider an INFINITE set of “half strings” (which we
intend to complete later). It is imperative that every
string in our set have a DIFFERENT, SINGLE “accept”
completion.

3. “Since S is infinite and M has finitely many states, there
must be two strings s, and s; in S for some i #j that end up
at the same state of M.”

4. Consider appending the (correct) completion to one of the
two strings.

5. “Since s, and s; both end up at the same state of M, and
we appended the same string t, both sit and s;t end at
the same state of M. Sincest € Land st ¢ L, M does
not recognize L.”

6. “Since M was arbitrary, no DFA recoghizes L.”

Prove A ={0"1": n 2 O} is not regular

Suppose for contradiction that some DFA, M, accepts A.

LetS ={0": n 2 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0' and 0/ (for some i # j)
that end in the same state in M.

Consider appending 1 to both strings. Note that 0'1i € A, but
0i1i¢ Asincei #j. Butthey both end up in the same state of
M. Since that state can’t be both an accept and reject state,
M does not recognize A.

Since M was arbitrary, no DFA recognizes A.

Another Irregular Language Example

L = {xe {0, 1,2}": x has an equal number of substtings 01 and 10}.

Intuition: Need to remember difference in # of 01 or 10 substrings
seen, but only hard to do if these are separated by 2’s.

Suppose for contradiction that some DFA, M, accepts L.
Let S ={g, 012, 012012, 012012012, ...} = {(012)": n € N}
Since S is infinite and M is finite, there must be two strings

(012) iand (012) i for some i # j that end up at the same state of
M. Consider appending string t = (102) to each of these strings.

Then, (012)' (102)! € L but (012))(102)' & Lsincei=j.

So (012) 1(102) 1 and (012) } (102) ! end up at the same state of
M since (012) 'and (012)) do. Since (012)!(102)! € L and
(012)§(102)! € L, M does not recognize L.

Since M was arbitrary, no DFA recognizes L.

