

Foundations of Computing I

Pre-Lecture Problem

Translate the following into predicate logic:

"There is a student who is friends with every other student except her enemies."

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \equiv \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no largest integer"

$$
\begin{aligned}
\forall x(\neg(\forall y(x \geq y))) & \equiv \forall x(\exists y(\neg(x \geq y))) \\
& \equiv \forall x(\exists y(x<y))
\end{aligned}
$$

"For every integer there is a larger integer"

Scope of Quantifiers

Example: NotLargest(x) $\equiv \exists y$ Greater (y, x) $\equiv \exists \mathrm{z}$ Greater (z, x)

Truth Value:

- Doesn't depend on y or z "bound variables"
- Does depend on x "free variable"

Quantifiers only act on free variables of the formulas they quantify, e.g. $\forall x(\exists y(P(x, y) \rightarrow \forall x Q(y, x)))$

Scope of Quantifiers

$\exists x(P(x) \wedge Q(x)) \quad$ vs. $\quad \exists x P(x) \wedge \exists x Q(x)$

This one asserts \mathbf{P} and Q of the same x .

This one asserts P and Q of potentially different x's.

Quantifier "Style"

This isn't "wrong", it's just horrible style.
Don't confuse your reader by using the same variable multiple times...there are a lot of letters...

CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference

WOW. I CAN'T FIND FAUUT WITH YOUR PRDOF.	YOU'VE SHOWN THE INCONSISTENCYAND THUS INALIDITY-OF BASKC LOGIC ITSELF.	DEAR DR. KNUTH,	I AM WRITNG TO CQLECT FROM YOU THE $\$ 3,372,564.48$ I AM OWED FOR DISCOVERING
			1,317,408 ERRORS IN THE ART of COMPITER PROGRAMMING...

MMM Candy!

Let B be the "starred" bag of M\&Ms.
Translate "There is a green M\&M in B." into predicate logic.

Domain of Discourse

Colors \& Bags

Predicate Definitions
$\operatorname{Bag}(x)::=$ "x is a bag of M\&Ms"
$\operatorname{Color}(x)::=$ " x is a color"
$\operatorname{Has}(b, c)::=$ " b has a c M\&M."

Has(Green, B)

Notice that both "Green" and "B" are constants here! You could, instead, define a predicate $\operatorname{Green}(\mathrm{x})$:

$$
\exists c(\operatorname{Color}(c) \wedge \operatorname{Green}(c) \wedge \operatorname{Has}(c, B))
$$

MMM Candy!

Domain of Discourse
Colors \& Bags

Predicate Definitions
$\operatorname{Bag}(x)::=$ "x is a bag of M\&Ms"
$\operatorname{Color}(x)::=$ " x is a color"
$\operatorname{Has}(b, c)::=" b$ has a c M\&M."

Translate "Every bag of M\&Ms has an M\&M of some color."

$$
\forall b(\operatorname{Bag}(b) \rightarrow \exists c(\operatorname{Color}(c) \wedge \operatorname{Has}(b, c)))
$$

Translate "There is a color that all bags of M\&Ms have."

$$
\exists c(\operatorname{Color}(c) \wedge \forall b(\operatorname{Bag}(b) \rightarrow \operatorname{Has}(b, c)))
$$

We're not done!

Domain of Discourse
Colors \& Bags

Predicate Definitions
$\operatorname{Bag}(x)::=$ "x is a bag of $M \& M s "$
$\operatorname{Color}(x)::=$ " x is a color"
$\operatorname{Has}(b, c)::=" b$ has a c M\&M."

"There is a color that all bags of M\&Ms have."
$\exists c(\operatorname{Color}(c) \wedge \forall b(\operatorname{Bag}(b) \rightarrow \operatorname{Has}(b, c)))$
For the bags on the left, this is not true. We need a single color that all the bags share.

VS.
"Every bag of M\&Ms has an M\&M of some color."
$\forall b(\operatorname{Bag}(b) \rightarrow \exists c(\operatorname{Color}(c) \wedge \operatorname{Has}(b, c)))$
For the bags on the left, this is true. The first bag has red; the second has orange, and the third has orange.

Still not done!

Domain of Discourse
Integers
OR
$\{1,2,3,4\}$

"There is a number greater than or equal to all numbers." $\exists x(\forall y(\operatorname{GreaterEq}(x, y)))$
"Every number has a number greater than or equal to it."

y $\forall y(\exists x(\operatorname{GreaterEq}(x, y)))$

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

Nested Quantifiers

- Bound variable names don't matter

$$
\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)
$$

- Positions of quantifiers can sometimes change

$$
\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))
$$

- But: order is important...

Quantification with Two Variables

expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
$\exists x \exists y P(x, y)$	At least one pair is true.	All pairs are false.
$\forall x \exists y P(x, y)$	We can find a specific y for each x. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$	Some x doesn't have a corresponding y.
$\exists y \forall x P(x, y)$	We can find ONE y that works no matter what x is. $\left(x_{1}, y\right),\left(x_{2}, y\right),\left(x_{3}, y\right)$	For any candidate y, there is an x that it doesn't work for.

Logical Inference

- So far we've considered:
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is a small part of this

Why Proofs?

Consider $\mathrm{f}(\mathrm{n})=991 \mathrm{n}$ ^2 $\mathbf{~ + ~} 1$

Is $f(\mathrm{n})$ a perfect square for any $\mathrm{n} \boldsymbol{>} \mathbf{0}$?

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as

- Given:
- If it is Monday then you have a 311 class today.
- It is Monday.
- Therefore, by modus ponens:
- You have a 311 class today.

Proofs

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$
1.
given
2. $\mathrm{p} \rightarrow \mathrm{q}$ given
3. $q \rightarrow r$ given
4. q
modus ponens from 1 and 2 modus ponens from 3 and 4

