Lecture 28: Undecidability and Reductions

```
DEFINE DOESITHALT(PROGRAM):
{
    RETURN TRUE;
}

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM
```
Review: Countability vs Uncountability

• To prove a set A countable you must show
 – There exists a listing x_1, x_2, x_3, \ldots such that every element of A is in the list.

• To prove a set B uncountable you must show
 – For every listing x_1, x_2, x_3, \ldots there exists some element in B that is not in the list.

– The diagonalization proof shows how to describe a missing element d in B based on the listing x_1, x_2, x_3, \ldots.

Important: the proof produces a d no matter what the listing is.
CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

We use the term “undecidable” since it is a true/false question that is not computable.

Why, intuitively, is this hard?
This really is a legal C program...

What does this program do?

```c
__(__,____,____){____/____<=1?__(__,____+1,____):
!(__%__)?__(__,____+1,0):____%____==____/____
&&!_____?(printf("%d\t",____/____),__(__,____+1,0)):____%____>1&&____%____<____/?____(____,1+
____,____+!(__/____%(____%____)):____<____*____?
__(__,____+1,____):0;}main(){__(100,0,0);}
```
A “Simple” Program

```java
public static void collatz(n) {
    if (n == 1) {
        return 1;
    }
    if (n % 2 == 0) {
        return collatz(n/2);
    } else {
        return collatz(3*n + 1);
    }
}
```

What does this program do?

... on n=11?

... on n=10000000000000000001?
public static void collatz(n) {
 if (n == 1) {
 return 1;
 }
 if (n % 2 == 0) {
 return collatz(n/2)
 }
 else {
 return collatz(3*n + 1)
 }
}

What does this program do?
... on n=11?
... on n=10000000000000000001?

Nobody knows whether or not this program halts on all inputs!

Trying to solve this has been called a “mathematical disease”.
Last time: Undecidability of the Halting Problem

\text{CODE}(P) \text{ means "the code of the program } P\text{"}

\textbf{The Halting Problem}

\textbf{Given:}
- CODE(P) for any program P
- input x

\textbf{Output:} true if P halts on input x
false if P does not halt on input x

\textbf{Theorem [Turing]:} There is no program that solves the Halting Problem

\textbf{Proof:} By contradiction.
Assume that a program H solving the Halting program does exist. Then program D must exist
Suppose that \(D(x) \) halts.

Then, by definition of \(H \) it must be that \(H(\text{CODE}(D), x) \) is true if \(D(x) \) halts, \(H(\text{CODE}(D), x) \) is false iff not

\[
\text{public static void } D(x) \{ \\
\quad \text{if } (H(x, x) == true) \{ \\
\quad\quad \text{while } (true); /* don't halt */ \\
\quad\} \\
\quad \text{else } \{ \\
\quad\quad \text{return; } /* \text{halt } */ \\
\quad\} \\
\}
\]

Note: Even though the program \(D \) has a \textbf{while}(true), that doesn’t mean that the program \(D \) actually goes into an infinite loop on input \(x \), which is what \(H \) has to determine.
Does \(D(\text{CODE}(D)) \) halt?

\(H \) solves the halting problem implies that

\[H(\text{CODE}(D), x) \text{ is true iff } D(x) \text{ halts, } H(\text{CODE}(D), x) \text{ is false iff not } \]

Suppose that \(D(\text{CODE}(D)) \) halts.

Then, by definition of \(H \) it must be that

\[H(\text{CODE}(D), \text{CODE}(D)) \]

Which by the definition of \(D \) means \(D(\text{CODE}(D)) \) doesn’t halt.

Suppose that \(D(\text{CODE}(D)) \) doesn’t halt.

Then, by definition of \(H \) it must be that

\[H(\text{CODE}(D), \text{CODE}(D)) \text{ is false} \]

Which by the definition of \(D \) means \(D(\text{CODE}(D)) \) halts.

Contradiction!

The ONLY assumption was the program \(H \) exists so that assumption must have been false.
Where did the idea for creating D come from?
Connection to diagonalization

<table>
<thead>
<tr>
<th>(\langle P_1 \rangle)</th>
<th>(\langle P_2 \rangle)</th>
<th>(\langle P_3 \rangle)</th>
<th>(\langle P_4 \rangle)</th>
<th>(\langle P_5 \rangle)</th>
<th>(\langle P_6 \rangle)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(P_5)</td>
<td>(P_6)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(P_5)</td>
<td>(P_6)</td>
<td>(P_7)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_4)</td>
<td>(P_5)</td>
<td>(P_6)</td>
<td>(P_7)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_5)</td>
<td>(P_6)</td>
<td>(P_7)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_6)</td>
<td>(P_7)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_7)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

Write \(\langle P \rangle \) for \(\text{CODE}(P) \)

Some possible inputs \(x \)

This listing of all programs really does exist since the set of all Java programs is countable.

The goal of this “diagonal” argument is not to show that the listing is incomplete but rather to show that a “flipped” diagonal element is not in the listing.
Connection to diagonalization

<table>
<thead>
<tr>
<th></th>
<th>(<P_1>)</th>
<th>(<P_2>)</th>
<th>(<P_3>)</th>
<th>(<P_4>)</th>
<th>(<P_5>)</th>
<th>(<P_6>)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_6)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_7)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_8)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P_9)</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Some possible inputs \(x\)

\((P,x)\) entry is **1** if program \(P\) halts on input \(x\)
and **0** if it runs forever
Connection to Diagonalization

Write `<P>` for `CODE(P)`

Some possible inputs `x`:

<table>
<thead>
<tr>
<th>All programs <code>P</code></th>
<th><code><P_1></code></th>
<th><code><P_2></code></th>
<th><code><P_3></code></th>
<th><code><P_4></code></th>
<th><code><P_5></code></th>
<th><code><P_6></code></th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>P_1</code></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>P_2</code></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><code>P_3</code></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><code>P_4</code></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><code>P_5</code></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td><code>P_6</code></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><code>P_7</code></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><code>P_8</code></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><code>P_9</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(P,x) entry is **1** if program `P` halts on input `x` and **0** if it runs forever.

Want behavior of program `D` to be like the flipped diagonal, so it can’t be in the list of all programs.
Where did the idea for creating D come from?

```java
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don’t halt */
    } else {
        return; /* halt */
    }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)
The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

“B decidable \rightarrow Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable \rightarrow B undecidable”

Therefore B is undecidable
A CSE 141 assignment

Students should write a Java program that:
- Prints “Hello” to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!
A related undecidable problem

- **HelloWorldTesting Problem:**
 - Input: CODE(Q) and x
 - Output:
 - True if Q outputs “HELLO WORLD” on input x
 - False if Q does not output “HELLO WORLD” on input x

- **Theorem:** The HelloWorldTesting Problem is undecidable.

- **Proof idea:** Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.
A related undecidable problem

• Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:
 – Creates CODE(Q) from CODE(P) by
 (1) removing all output statements from CODE(P), and
 (2) adding a `System.out.println("HELLO WORLD")` immediately before any spot where P could halt
 Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
• If P doesn’t halt on input x then Q won’t print anything since we removed any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.
The HaltsNoInput Problem

• Input: \text{CODE}(R) for program R
• Output: True if R halts without reading input
 False otherwise.

\textbf{Theorem:} HaltsNoInput is undecidable

General idea “hard-coding the input”:
• Show how to use \text{CODE}(P) and x to build \text{CODE}(R) so
 P halts on input x \iff R halts without reading input
The HaltsNoInput Problem

“Hard-coding the input”:

• Show how to use $\text{CODE}(P)$ and x to build $\text{CODE}(R)$ so P halts on input $x \iff R$ halts without reading input.

• Replace input statement in $\text{CODE}(P)$ that reads input x into variable var, by a hard-coded assignment statement:

 \[
 \text{var} = x
 \]

 to produce $\text{CODE}(R)$.

• So if we have a program N to decide HaltsNoInput then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:

 – On input $\text{CODE}(P)$ and x, produce $\text{CODE}(R)$. Then run N on input $\text{CODE}(R)$ and output the answer that N gives.
• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.
More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.

- For instance:

 \[\text{EQUIV}(P, Q) : \]
 \[
 \begin{align*}
 \text{True} & \quad \text{if } P(x) \text{ and } Q(x) \text{ have the same behavior for every input } x \\
 \text{False} & \quad \text{otherwise}
 \end{align*}
 \]
Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

- **Input** `CODE(P)` and `x`
 Output: `true` if `P` prints “ERROR” on input `x` after less than 100 steps
 `false` otherwise

- **Input** `CODE(P)` and `x`
 Output: `true` if `P` prints “ERROR” on input `x` after more than 100 steps
 `false` otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of Java programs is undecidable.
Computers and algorithms

• Does Java (or any programming language) cover all possible computation? Every possible algorithm?

• There was a time when computers were people who did calculations on sheets paper to solve computational problems.

• Computers as we known them arose from trying to understand everything these people could do.
before Java

1930’s:

How can we formalize what algorithms are possible?

- **Turing machines** (Turing, Post)
 - basis of modern computers
- **Lambda Calculus** (Church)
 - basis for functional programming
- **μ-recursive functions** (Kleene)
 - alternative functional programming basis
Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

– Intuitive justification
– Huge numbers of equivalent models to TM’s based on radically different ideas
Turing machines

• **Finite Control**
 – Brain/CPU that has only a finite # of possible “states of mind”

• **Recording medium**
 – An unlimited supply of blank “scratch paper” on which to write & read symbols, each chosen from a finite set of possibilities
 – Input also supplied on the scratch paper

• **Focus of attention**
 – Finite control can only focus on a small portion of the recording medium at once
 – Focus of attention can only shift a small amount at a time
Turing machines

- **Recording medium**
 - An infinite read/write “tape” marked off into cells
 - Each cell can store one symbol or be “blank”
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape - starts on input

- **In each step, a Turing machine**
 - Reads the currently scanned symbol
 - Based on current state and scanned symbol
 - Overwrites symbol in scanned cell
 - Moves read/write head left or right one cell
 - Changes to a new state

- **Each Turing Machine is specified by its finite set of rules**