Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 - Also can have edges labeled by empty string ε
- **Defn:** x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
NFA for set of binary strings with a 1 in the 3rd position from the end
NFA for set of binary strings with a 1 in the 3rd position from the end

\[s_3 \xrightarrow{1} s_2 \xrightarrow{0,1} s_1 \xrightarrow{0,1} s_0 \]
Compare with the smallest DFA
Parallel Exploration view of an NFA

Input string 0101100
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

$P(A)$ be "There is an NFA N_A that recognizes the language represented by reg.exp. A".

If regular expr. A, $P(A)$ is true.
Regular Expressions over Σ

- **Basis:**
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Base Case

- Case \emptyset:

 $\rightarrow 0$

- Case ε:

 $\rightarrow 0$

- Case a:

 $\rightarrow a$
Base Case

- Case \emptyset:

- Case ε:

- Case a:
Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B.
Inductive Step

Case \((A \cup B)\):
Inductive Step

Case \((A \cup B)\):
Inductive Step

Case (AB):
Inductive Step

Case (AB):
Inductive Step

Case A*
Inductive Step

Case A*
Build an NFA for \((01 \cup 1)^*0\)
Solution

$$(01 \cup 1)^*0$$
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Conversion of NFAs to a DFAs

• Proof Idea:
 – The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 – There will be one state in the DFA for each subset of states of the NFA that can be reached by some string
Parallel Exploration view of an NFA

Input string 0101100

\[
\begin{align*}
0,1 & \quad 1 & \quad 0,1 & \quad 0,1 \\
\rightarrow s_3 & \quad s_2 & \quad s_1 & \quad s_0
\end{align*}
\]

\[
\begin{align*}
0 & \quad 1 & \quad 0 & \quad 1 & \quad 1 & \quad 0 & \quad 0 \\
\rightarrow s_3 & \quad s_0 & \quad X \\
\rightarrow s_2 & \quad s_1 & \quad s_0 & \quad X \\
\rightarrow s_2 & \quad s_1 & \quad s_0 & \quad X
\end{align*}
\]
Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε
Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by ϵ
- T will be \emptyset if no edges from S labeled s exist
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA

NFA

DFA

a, b, c, e
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – n-state NFA yields DFA with at most 2^n states
 – We saw an example where roughly 2^n is necessary
 “Is the n^{th} char from the end a 1?”

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms