CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

Oh:

CSE 668

Midterm
37-99
Median 81
90's 65
80's 75
70's 69
60's 39
59's 20
Recursive Definitions of Sets: General Form

Recursive definition

– **Basis step:** Some specific elements are in S
– **Recursive step:** Given some existing named elements in S some new objects constructed from these named elements are also in S.
– **Exclusion rule:** Every element in S follows from the basis step and a finite number of recursive steps.
Structural Induction

How to prove \(\forall x \in S, P(x) \) is true:

Base Case: Show that \(P(u) \) is true for all specific elements \(u \) of \(S \) mentioned in the *Basis step*

Inductive Hypothesis: Assume that \(P \) is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that \(P(w) \) holds for each of the new elements \(w \) constructed in the *Recursive step* using the named elements mentioned in the *Inductive Hypothesis*

Conclude that \(\forall x \in S, P(x) \)
Strings

• An alphabet Σ is any finite set of characters

• The set Σ^* of strings over the alphabet Σ is defined by
 - **Basis:** $\varepsilon \in \Sigma^*$ (ε is the empty string w/ no chars)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Functions on Recursively Defined Sets (on Σ^*)

Length:
\[
\begin{align*}
\text{len}(\varepsilon) &= 0 \\
\text{len}(wa) &= 1 + \text{len}(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Reversal:
\[
\begin{align*}
\varepsilon^R &= \varepsilon \\
(wa)^R &= aw^R \text{ for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Concatenation:
\[
\begin{align*}
x \cdot \varepsilon &= x \text{ for } x \in \Sigma^* \\
x \cdot wa &= (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Number of c’s in a string:
\[
\begin{align*}
\#_c(\varepsilon) &= 0 \\
\#_c(wc) &= \#_c(w) + 1 \text{ for } w \in \Sigma^* \\
\#_c(wa) &= \#_c(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\end{align*}
\]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.
We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.
Claim: $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

Let $P(y)$ be “$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$”. We prove $P(y)$ for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)$ since $\text{len}(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true.
Claim: \(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \epsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \bullet \epsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\epsilon) \) since \(\text{len}(\epsilon) = 0 \). Therefore \(P(\epsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \).

Let \(a \in \Sigma \). Then
\[
\text{len}(x \bullet wa) = \text{len}(x \bullet w) + 1 \quad \text{by defn of } \bullet \\
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by defn of len} \\
= \text{len}(x) + \text{len}(wa) \quad \text{by I.H.}
\]

Therefore \(\text{len}(x \bullet wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \).
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: **Goal:** Show that \(P(wa) \) is true for every \(a \in \Sigma \)

Let \(a \in \Sigma \). Let \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by defn of \(\cdot \)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by defn of len}
\]

\[
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.}
\]

\[
= \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
\]

Therefore \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \).
Rooted Binary Trees

- **Basis:**
 - is a rooted binary tree

- **Recursive step:**

 If \(T_1 \) and \(T_2 \) are rooted binary trees,

 then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- \(\text{size}(\bullet) = 1 \)
- \(\text{size}(\begin{array}{c} T_1 \\ \hline \end{array} T_2) = 1 + \text{size}(T_1) + \text{size}(T_2) \)
- \(\text{height}(\bullet) = 0 \)
- \(\text{height}(\begin{array}{c} T_1 \\ \hline \end{array} T_2) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step: Goal: Prove $P($\hspace{1cm}$)$.

By defn, $\text{size}(\hspace{1cm}) = 1 + \text{size}(T_1) + \text{size}(T_2) \leq 1 + 2^{\text{height}(T_1)} + 1 - 1 + 2^{\text{height}(T_2)} + 1 - 1$ by IH for T_1 and T_2.

$\leq 2^{\text{height}(T_1)} + 1 + 2^{\text{height}(T_2)} + 1 - 1 \leq 2(2^{\text{max}(\text{height}(T_1), \text{height}(T_2))} + 1) - 1 \leq 2^{\text{height}(\hspace{1cm})} + 1 - 1$ which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

 By defn, $\text{size}(\bigtriangledown) = \text{size}(T_1) + \text{size}(T_2)$
 $\leq 1 + 2^{\text{height}(T_1)} + 1 + 2^{\text{height}(T_2)} + 1 - 1$ by IH for T_1 and T_2
 $= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$
 $\leq 2(2^{\max(\text{height}(T_1), \text{height}(T_2))} + 1) - 1$
 $= 2(2^{\text{height}(\bigtriangledown)}) - 1 = 2^{\text{height}(\bigtriangledown) + 1} - 1$
 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.
Languages: Sets of Strings

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Legal variable names. Keywords in Java/C/C++
 - Binary strings with an equal # of 0’s and 1’s
Regular Expressions

Regular expressions over Σ

- **Basis:**
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Each Regular Expression is a “pattern”

ε matches the empty string

a matches the one character string a

(A ∪ B) matches all strings that either A matches or B matches (or both)

(AB) matches all strings that have a first part that A matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another
Examples

001*

\[\{ 60, 001, 0011, 0100 \} \]

0*1*

\[\{ 0, 1, 0011, 0100 \} \]
Examples

\[001^*\]

\{00, 001, 0011, 00111, \ldots\}

\[0^*1^*\]

Any number of 0’s followed by any number of 1’s
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\((0*1*)*)

\(\{\ 0\ 0\ 0\ 0\ ,\ 0\ 0\ 1\ 0\ ,\ 1\ 0\ 0\ 0\ ,\ 1\ 0\ 1\ 0\ \}\)

All binary strings
Examples

\[(0 \cup 1) \, 0 \, (0 \cup 1) \, 0\]

\[\{0000, 0010, 1000, 1010\}\]

\[(0^*1^*)^*\]

All binary strings
Examples

\((0 \cup 1)^* 0110 (0 \cup 1)^* \)

All being done with \(0110 \).

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^* \)
Examples

\((0 \cup 1)^* 0110 (0 \cup 1)^*\)

Binary strings that contain “0110”

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*\)

Binary strings that begin with pairs of characters followed by “01010” or “10001”
Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
• Used in `grep`, a program that does pattern matching searches in UNIX/LINUX
• Pattern matching using regular expressions is an essential feature of PHP
• We can use regular expressions in programs to process strings!
Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaaab");
- boolean b = m.matches();

 [01] a 0 or a 1 ^ start of string $ end of string
 [0–9] any single digit \ period \, comma \− minus
 . any single character
ab a followed by b (AB)
(a | b) a or b (A ∪ B)
a? zero or one of a (A ∪ ε)
a* zero or more of a A*
a+ one or more of a AA*

- e.g. ^[\-+]?[0–9]* (\ . | \,)?[0–9]+$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)