Lecture 18: Structural Induction, Regular expressions
Recursive Definitions of Sets: General Form

Recursive definition

– **Basis step:** Some specific elements are in S

– **Recursive step:** Given some existing named elements in S some new objects constructed from these named elements are also in S.

– **Exclusion rule:** Every element in S follows from the basis step and a finite number of recursive steps
Structural Induction

How to prove $\forall \ x \in S, \ P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall \ x \in S, \ P(x)$
Strings

• An *alphabet* Σ is any finite set of characters

• The set Σ^* of *strings* over the alphabet Σ is defined by

 – **Basis:** $\epsilon \in \Sigma$ (\(\epsilon\) is the empty string w/ no chars)

 – **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Functions on Recursively Defined Sets (on Σ^*)

Length:
\[
\text{len}(\varepsilon) = 0 \\
\text{len}(wa) = 1 + \text{len}(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Reversal:
\[
\varepsilon^R = \varepsilon \\
(wa)^R = aw^R \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Concatenation:
\[
x \cdot \varepsilon = x \text{ for } x \in \Sigma^* \\
x \cdot wa = (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma
\]

Number of c’s in a string:
\[
\#_c(\varepsilon) = 0 \\
\#_c(wc) = \#_c(w) + 1 \text{ for } w \in \Sigma^* \\
\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)

since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Therefore \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \), so

\(\therefore P(y) \) is true.
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \).
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \).

For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \)

Let \(a \in \Sigma \). Let \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by defn of \(\cdot \)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by defn of len}
\]
\[
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.}
\]
\[
= \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
\]

Therefore \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)
Rooted Binary Trees

• Basis: is a rooted binary tree
• Recursive step:

If \(T_1 \) and \(T_2 \) are rooted binary trees,

then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- $\text{size}(\bullet) = 1$

- $\text{size}\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$

- $\text{height}(\bullet) = 0$

- $\text{height}\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.
Claim: For every rooted binary tree T, $size(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$size(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $size(\bullet) = 1$, $height(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step: Goal: Prove $P(\begin{array}{c} T_1 \\ T_2 \end{array})$.

By defn, $size(\begin{array}{c} T_1 \\ T_2 \end{array}) = 1 + size(T_1) + size(T_2) \leq 1 + 2^{\text{height}(T_1)} + 1 - 1 + 2^{\text{height}(T_2)} + 1 - 1$ by IH for T_1 and T_2.

$\leq 2^{\text{height}(T_1)} + 1 + 2^{\text{height}(T_2)} + 1 - 1 \leq 2(2^{\text{max(height(T_1),height(T_2))} + 1}) - 1 \leq 2^{\text{height}\begin{array}{c} T_1 \\ T_2 \end{array}} + 1 - 1$ which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted binary trees by structural induction.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step:

 Goal: Prove $P(\begin{array}{c} T_1 \vline \vline \vline T_2 \end{array})$.

 By defn, $\text{size}(\begin{array}{c} T_1 \vline \vline \vline T_2 \end{array}) = 1 + \text{size}(T_1) + \text{size}(T_2)$

 $\leq 1 + 2^{\text{height}(T_1) + 1} - 1 + 2^{\text{height}(T_2) + 1} - 1$

 by IH for T_1 and T_2

 $= 2^{\text{height}(T_1) + 1} + 2^{\text{height}(T_2) + 1} - 1$

 $\leq 2(2^{\max(\text{height}(T_1), \text{height}(T_2)) + 1}) - 1$

 $= 2^{\max(\text{height}(T_1), \text{height}(T_2))} - 1 = 2^{\text{height}(\begin{array}{c} T_1 \vline \vline \vline T_2 \end{array}) + 1} - 1$

 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.
Sets of strings that satisfy special properties are called \textit{languages}. Examples:

- English sentences
- Syntactically correct Java/C/C++ programs
- $\Sigma^* =$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don’t have a 0 after a 1
- Legal variable names, keywords in Java/C/C++
- Binary strings with an equal # of 0’s and 1’s
Regular Expressions

Regular expressions over Σ

- **Basis:**
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Each Regular Expression is a “pattern”

Φ doesn’t match anything
ε matches the empty string
a matches the one character string a

(A ∪ B) matches all strings that either A matches or B matches (or both)

(AB) matches all strings that have a first part that A matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another
Examples

001*

\{ \varepsilon, 0, 1, oo, oo-1, \ldots \}

0*1*
Examples

001*

\{00, 001, 0011, 00111, \ldots\}

0*1*

Any number of 0’s followed by any number of 1’s
Examples

\[(0 \cup 1) 0 (0 \cup 1) 0\]

\[
\{0000, 0010, 1000, 1010\}
\]

\[(0*1*)^*\]

\[(0 \cup 1)^*\]
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\{0000, 0010, 1000, 1010\}

\((0*1*)^*\)

All binary strings
Examples

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]

Any binary string that contains 0110

\[(00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\]
Examples

\((0 \cup 1)^* 0110 (0 \cup 1)^*\)

Binary strings that contain “0110”

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*\)

Binary strings that begin with pairs of characters followed by “01010” or “10001”
Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
• Used in grep, a program that does pattern matching searches in UNIX/LINUX
• Pattern matching using regular expressions is an essential feature of PHP
• We can use regular expressions in programs to process strings!
Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();

- [01] a 0 or a 1 ^ start of string $ end of string
- [0–9] any single digit \ . period \ , comma \ – minus
- . any single character
- ab a followed by b (AB)
- (a | b) a or b (A ∪ B)
- a? zero or one of a (A ∪ ε)
- a* zero or more of a A*
- a+ one or more of a AA*

- e.g. ^[\-\+]?[0–9]* (\ . | \ ,) ?[0–9]+$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)