Lecture 16: Recursion & Strong Induction
Applications: Fibonacci & Euclid

Avg/median
1, 2, 3 ~ 88-90
4 ~ 80

Midterm
Monday in class
Review session
Sunday 4-7 pm

I am away
Thursday - Sunday
More Recursive Definitions

Suppose that $h: \mathbb{N} \rightarrow \mathbb{R}$.

Then we have familiar summation notation:

$\sum_{i=0}^{0} h(i) = h(0)$

$\sum_{i=0}^{n+1} h(i) = h(n + 1) + \sum_{i=0}^{n} h(i)$ for $n \geq 0$

There is also product notation:

$\prod_{i=0}^{0} h(i) = h(0)$

$\prod_{i=0}^{n+1} h(i) = h(n + 1) \cdot \prod_{i=0}^{n} h(i)$ for $n \geq 0$
Fibonacci Numbers

\[f_0 = 0 \]
\[f_1 = 1 \]
\[f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2 \]
Strong Inductive Proofs In 5 Easy Steps

1. “Let \(P(n) \) be... . We will show that \(P(n) \) is true for all integers \(n \geq b \) by strong induction.”

2. “Base Case:” Prove \(P(b) \)

3. “Inductive Hypothesis:

 Assume that for some arbitrary integer \(k \geq b \),

 \(P(j) \) is true for every integer \(j \) from \(b \) to \(k \)”

4. “Inductive Step:” Prove that \(P(k + 1) \) is true:

 Use the goal to figure out what you need.

 Make sure you are using I.H. (that \(P(b),...,P(k) \) are true) and point out where you are using it.

 (Don’t assume \(P(k + 1) !!)\n
5. “Conclusion: \(P(n) \) is true for all integers \(n \geq b \)”
Bounding Fibonacci I: $f_n < 2^n$ for all $n \geq 0$

1. Let $p(n)$ be "$f_n < 2^n$" for all $n \geq 0$. We will prove that $p(n)$ is true for all $n > 0$.

2. Base Case: when $n = 0$: $2^0 = 1 > 0 = f_0$ so $p(0)$ is true.

Since $0 < 1$ we have $f_0 < 2^0$ and $f_0 < 2^1$.

$$f_0 = 0 \quad f_1 = 1 \quad f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2$$
Bounding Fibonacci I: \(f_n < 2^n \) for all \(n \geq 0 \)

1. Let \(P(n) \) be “\(f_n < 2^n \)”. We prove that \(P(n) \) is true for all integers \(n \geq 0 \) by strong induction.

2. Base Case: \(f_0 = 0 < 1 = 2^0 \) so \(P(0) \) is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer \(k \geq 0 \), \(P(j) \) is true for every integer \(j \) from 0 to \(k \).

4. Inductive Step: Goal: Show \(P(k+1) \); that is, \(f_{k+1} \leq 2^{k+1} \).
 - Case \(k+1 = 1 \): Then \(f_1 = 1 \leq 2^1 \) so \(P(k+1) \) is true here.
 - Case \(k+1 \geq 2 \): Then \(f_{k+1} = f_k + f_{k-1} \) by definition \(\leq 2^k + 2^{k-1} \) by the IH \(\leq 2^k + 2^k = 2 \cdot 2^k = 2^{k+1} \) so \(P(k+1) \) is true in this case.

5. Therefore by strong induction, \(f_n < 2^n \) for all integers \(n \geq 0 \).

\[
\begin{align*}
f_0 &= 0 & f_1 &= 1 \\
f_n &= f_{n-1} + f_{n-2} & \text{for all } n \geq 2
\end{align*}
\]
Bounding Fibonacci I: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be “$f_n < 2^n$”. We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.

2. Base Case: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every integer j from 0 to k.

4. Inductive Step: **Goal: Show $P(k+1)$; that is, $f_{k+1} < 2^{k+1}$**

$$f_0 = 0 \quad f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2$$
Bounding Fibonacci I: \(f_n < 2^n \) for all \(n \geq 0 \)

1. Let \(P(n) \) be “\(f_n < 2^n \)”. We prove that \(P(n) \) is true for all integers \(n \geq 0 \) by strong induction.

2. Base Case: \(f_0 = 0 < 1 = 2^0 \) so \(P(0) \) is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer \(k \geq 0 \), \(P(j) \) is true for every integer \(j \) from 0 to \(k \).

4. Inductive Step: Goal: Show \(P(k+1) \); that is, \(f_{k+1} < 2^{k+1} \)

 Case \(k+1 = 1 \):
 \[
 f_{1+1} = f_1 = 1 < 2 = 2^1 \quad \text{so} \quad f_{k+1} < 2^{k+1} \quad \checkmark
 \]

 Case \(k+1 \geq 2 \):
 \[
 f_{k+1} = f_k + f_{k-1} \quad \text{since} \quad k+1 > 2
 \]
 \[
 < 2^k + 2^{k-1} \quad \text{by IH} \quad \& \quad k, k-1
 \]
 \[
 < 2^k + 2^k \quad \text{since} \quad k-1 \geq 0
 \]
 \[
 = 2(2^k) = 2^{k+1} \quad \checkmark
 \]

5. Therefore by strong induction, \(f_n < 2^n \) for all integers \(n \geq 0 \).

\[
\begin{align*}
 f_0 &= 0 & f_1 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} & \text{for all} \ n \geq 2
\end{align*}
\]
Bounding Fibonacci I: \(f_n < 2^n \) for all \(n \geq 0 \)

1. Let \(P(n) \) be “\(f_n < 2^n \)”.
 We prove that \(P(n) \) is true for all integers \(n \geq 0 \) by strong induction.

2. Base Case: \(f_0 = 0 < 1 = 2^0 \) so \(P(0) \) is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer \(k \geq 0 \), \(P(j) \) is true for every integer \(j \) from 0 to \(k \).

4. Inductive Step: **Goal: Show \(P(k+1) \); that is, \(f_{k+1} < 2^{k+1} \)**

 - **Case \(k+1 = 1 \):** Then \(f_1 = 1 < 2 = 2^1 \) so \(P(k+1) \) is true here.

 - **Case \(k+1 \geq 2 \):** Then \(f_{k+1} = f_k + f_{k-1} \) by definition

 \[f_{k+1} < 2^k + 2^{k-1} \text{ by the IH since } k-1 \geq 0 \]

 \[< 2^k + 2^k = 2 \cdot 2^k = 2^{k+1} \]

 so \(P(k+1) \) is true in this case.

 These are the only cases so \(P(k+1) \) follows.

5. Therefore by strong induction,
 \[f_n < 2^n \text{ for all integers } n \geq 0. \]

 \[f_0 = 0 \quad f_1 = 1 \quad f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2 \]
Bounding Fibonacci II: \(f_n \geq 2^{n/2} - 1 \) for all \(n \geq 2 \)

\[
f_0 = 0 \quad f_1 = 1 \\
f_n = f_{n-1} + f_{n-2} \quad \text{for all } n \geq 2
\]
Bounding Fibonacci II: \(f_n \geq 2^{n/2} - 1 \) for all \(n \geq 2 \)

1. Let \(P(n) \) be “\(f_n \geq 2^{n/2} - 1 \)”. We prove that \(P(n) \) is true for all integers \(n \geq 2 \) by strong induction.

2. Base Case: \(f_2 = f_1 + f_0 \leq 1 \) and \(2^{2/2} - 1 = 2^0 = 1 \) so \(P(2) \) is true.

\[
\begin{align*}
 f_0 &= 0 \\
 f_1 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} \quad \text{for all } n \geq 2
\end{align*}
\]
Bounding Fibonacci II: \(f_n \geq 2^{n/2} - 1 \) for all \(n \geq 2 \)

1. Let \(P(n) \) be “\(f_n \geq 2^{n/2} - 1 \)”. We prove that \(P(n) \) is true for all integers \(n \geq 2 \) by strong induction.

2. Base Case: \(f_2 = f_1 + f_0 = 1 \) and \(2^{2/2} - 1 = 2^0 = 1 \) so \(P(2) \) is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer \(k \geq 2 \), \(P(j) \) is true for every integer \(j \) from 2 to \(k \).

4. Inductive Step: Goal: Show \(P(k+1) \); that is, \(f_{k+1} \geq 2^{(k+1)/2} - 1 \)

 No need for cases for the definition here:
 \[
 f_{k+1} = f_k + f_{k-1} \text{ since } k+1 \geq 2
 \]
 Now just want to apply the IH to get \(P(k) \) and \(P(k-1) \):

 Problem: Though we can get \(P(k) \) since \(k \geq 2 \),
 \(k-1 \) may only be 1 so we can’t conclude \(P(k-1) \)

 Solution: Separate cases for when \(k-1=1 \) (or \(k+1=3 \)).

\[
\begin{align*}
 f_0 &= 0 & f_1 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} \text{ for all } n \geq 2
\end{align*}
\]
Bounding Fibonacci II: $f_n \geq 2^{n/2} - 1$ for all $n \geq 2$

1. Let $P(n)$ be “$f_n \geq 2^{n/2} - 1$”. We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.

2. Base Case: $f_2 = f_1 + f_0 = 1$ and $2^{2/2} - 1 = 2^0 = 1$ so $P(2)$ is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j from 2 to k.

4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1)/2} - 1$

 Case $k+1 = 3$: $f_3 = f_2 + f_1 = 2 \geq 2^{3/2} - 1$

 Case $k+1 \geq 4$: $f_{k+1} = f_k + f_{k-1}$ by definition

\[
\begin{align*}
 f_0 &= 0 & f_1 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} & \text{for all } n \geq 2
\end{align*}
\]
Bounding Fibonacci II: $f_n \geq 2^{n/2} - 1$ for all $n \geq 2$

1. Let $P(n)$ be “$f_n \geq 2^{n/2} - 1$”. We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.

2. Base Case: $f_2 = f_1 + f_0 = 1$ and $2^{2/2} - 1 = 2^0 - 1 = 1$ so $P(2)$ is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j from 2 to k.

4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1)/2} - 1$

 Case $k+1 = 3$: Then $f_{k+1} = f_3 = f_2 + f_1 = 2 \geq 2^{1/2} = 2^{3/2 - 1} = 2^{(k+1)/2} - 1$

 Case $k+1 \geq 4$:

 \[
 f_{k+1} = f_{k} + f_{k-1} \geq 2^{k/2} + 2^{(k-1)/2} - 1 \geq 2^{k/2} + 2^{(k-1)/2 - 1} - 1 \geq 2^{k/2} + 2^{(k-1)/2 - 1} - 1 \geq 2^{(k+1)/2} - 1
 \]

5. Therefore by strong induction, $f_n \geq 2^{n/2} - 1$ for all integers $n \geq 0$.

\[
\begin{align*}
 f_0 &= 0 & f_1 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} & \text{for all } n \geq 2
\end{align*}
\]
Bounding Fibonacci II: \(f_n \geq 2^{n/2} - 1 \) for all \(n \geq 2 \)

1. Let \(P(n) \) be “\(f_n \geq 2^{n/2} - 1 \)”. We prove that \(P(n) \) is true for all integers \(n \geq 2 \) by strong induction.

2. Base Case: \(f_2 = f_1 + f_0 = 1 \) and \(2^{2/2} - 1 = 2^0 = 1 \) so \(P(2) \) is true.

3. Inductive Hypothesis: Assume that for some arbitrary integer \(k \geq 2 \), \(P(j) \) is true for every integer \(j \) from 2 to \(k \).

4. Inductive Step: Goal: Show \(P(k+1) \); that is, \(f_{k+1} \geq 2^{(k+1)/2} - 1 \)

 - **Case \(k+1 = 3 \):** Then \(f_{k+1} = f_3 = f_2 + f_1 = 2 \geq 2^{1/2} = 2^{3/2-1} = 2^{(k+1)/2} - 1 \)

 - **Case \(k+1 \geq 4 \):** \(f_{k+1} = f_k + f_{k-1} \) by definition
 \[
 f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n
 \]
 \[
 \geq 2^{k/2-1} + 2^{(k-1)/2-1} \text{ by the IH since } k-1 \geq 2
 \]
 \[
 \geq 2^{(k-1)/2-1} + 2^{(k-1)/2-1} = 2^{(k-1)/2} = 2^{(k+1)/2} - 1
 \]
 So \(P(k+1) \) is true in both cases.

5. Therefore by strong induction, \(f_n \geq 2^{n/2} - 1 \) for all integers \(n \geq 0 \).

\[
\begin{align*}
f_0 &= 0 & f_1 &= 1 \\
f_n &= f_{n-1} + f_{n-2} & \text{for all } n \geq 2
\end{align*}
\]
Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps for $\gcd(a, b)$ with $a \geq b > 0$. Then, $a \geq f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with $r_{n+1} = a$ and $r_n = b$:

$\begin{align*}
r_{n+1} &= q_n r_n + r_{n-1} \\
r_n &= q_{n-1} r_{n-1} + r_{n-2} \\
& \quad \vdots \\
r_3 &= q_2 r_2 + r_1 \\
r_2 &= q_1 r_1
\end{align*}$

For all $k \geq 2$, $r_{k-1} = r_{k+1} \mod r_k$

Now $r_1 \geq 1$ and each q_k must be ≥ 1. If we replace all the q_k’s by 1 and replace r_1 by 1, we can only reduce the r_k’s. After that reduction, $r_k = f_k$ for every k.
Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps for $\gcd(a, b)$ with $a \geq b > 0$. Then, $a \geq f_{n+1}$.

We go by strong induction on n.

Let $P(n)$ be “$\gcd(a, b)$ with $a \geq b > 0$ takes n steps $\rightarrow a \geq f_{n+1}$” for all $n \geq 1$.

Base Case: $n=1$ If Euclid’s Algorithm on a, b with $a \geq b > 0$ takes 1 step, then $a=q_1b$ for some q_1 and $a \geq b \geq 1=f_2$ and $P(1)$ holds

Induction Hypothesis: Suppose that for some integer $k \geq 1$, $P(j)$ is true for all integers j s.t. $1 \leq j \leq k$

Inductive Step: We want to show: if $\gcd(a, b)$ with $a \geq b > 0$ takes $k+1$ steps, then $a \geq f_{k+2}$.
Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer $k \geq 1$, $P(j)$ is true for all integers j s.t. $1 \leq j \leq k$

Inductive Step: We want to show: if $\gcd(a,b)$ with $a \geq b > 0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Now if $k+1 = 2$, the two steps of Euclid’s algorithm on a and b are given by $\gcd(a,b) = \gcd(b,c) = \gcd(c,0) = c$ where

- $a = q_2 b + c$
- $b = q_1 c$
- and $c = a \mod b > 0$

By definition of mod we have $b > c > 0$.

Also, since $a \geq b$ we must have $q_2 \geq 1$.

So $a = q_2 b + c \geq b + c \geq 1+1 = 2 = f_3 = f_{k+2}$ as required.
Induction Hypothesis: Suppose that for some integer \(k \geq 1 \), \(P(j) \) is true for all integers \(j \) s.t. \(1 \leq j \leq k \).

Inductive Step: We want to show: if \(\gcd(a,b) \) with \(a \geq b > 0 \) takes \(k+1 \) steps, then \(a \geq f_{k+2} \).

Next suppose that \(k+1 \geq 3 \) so for the first three steps of Euclid’s algorithm on \(a \) and \(b \) we have \(\gcd(a,b) = \gcd(b,c) = \gcd(c,d) \) where
\[
\begin{align*}
 a &= q_{k+1} b + c \\
 b &= q_k c + d \\
 c &= q_{k-1} d + e
\end{align*}
\]

\((c = a \mod b \ , \ d = b \mod c \ , \ e = c \mod d \text{ and } d > 0) \)

By definition of mod we have \(b > c > d > 0 \), \(\gcd(b,c) \) takes \(k \) steps and \(\gcd(c,d) \) takes \(k-1 \geq 1 \) steps, so by the IH we have \(b \geq f_{k+1} \) and \(c \geq f_k \).

Also, since \(a \geq b \) we must have \(q_{k+1} \geq 1 \).

So \(a = q_{k+1} b + c \geq b + c \geq f_{k+1} + f_k = f_{k+2} \) as required.
Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes \(n \) steps for \(\gcd(a, b) \) with \(a \geq b > 0 \). Then, \(a \geq f_{n+1} \).

Informal Recap: Consider an \(n \) step \(\gcd \) calculation starting with \(r_{n+1} = a \) and \(r_n = b \):

\[
\begin{align*}
 r_{n+1} &= q_n r_n + r_{n-1} \\
 r_n &= q_{n-1} r_{n-1} + r_{n-2} \\
 &\quad \ldots \\
 r_3 &= q_2 r_2 + r_1 \\
 r_2 &= q_1 r_1
\end{align*}
\]

For all \(k \geq 2 \), \(r_{k-1} = r_{k+1} \mod r_k \)

Now \(r_1 \geq 1 \) and each \(q_k \) must be \(\geq 1 \). If we replace all the \(q_k \)'s by 1 and replace \(r_1 \) by 1, we can only reduce the \(r_k \)'s. After that reduction, \(r_k = f_k \) for every \(k \).
Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes \(n \) steps for \(\gcd(a, b) \) with \(a \geq b > 0 \). Then, \(a \geq f_{n+1} \).

Why does this help us bound the running time of Euclid’s Algorithm?

We already proved that \(f_n \geq 2^{n/2} - 1 \) so \(f_{n+1} \geq 2^{(n-1)/2} \).

Therefore: if Euclid’s Algorithm takes \(n \) steps for \(\gcd(a, b) \) with \(a \geq b > 0 \) then \(a \geq 2^{(n-1)/2} \) so \((n - 1)/2 \leq \log_2 a \) or \(n \leq 1 + 2\log_2 a \) i.e., \(\# \) of steps \(\leq \) twice the \(\# \) of bits in \(a \).
Recursive Definition of Sets

Recursive Definition

• Basis Step: $0 \in S$
• Recursive Step: If $x \in S$, then $x + 2 \in S$
• Exclusion Rule: Every element in S follows from basis steps and a finite number of recursive steps.
Recursive Definitions of Sets

Basis: \(6 \in S, \ 15 \in S \)
Recursive: If \(x, y \in S \), then \(x+y \in S \)

Basis: \([1, 1, 0] \in S, [0, 1, 1] \in S\)
Recursive: If \([x, y, z] \in S\), then \([\alpha x, \alpha y, \alpha z] \in S\)
If \([x_1, y_1, z_1] \in S\) and \([x_2, y_2, z_2] \in S\), then
\([x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S\).

Powers of 3:
Recursive Definitions of Sets

Basis: \[6 \in S, \ 15 \in S\]
Recursive: If \(x, y \in S\), then \(x+y \in S\)

Basis: \([1, 1, 0] \in S, \ [0, 1, 1] \in S\]
Recursive: If \([x, y, z] \in S\), then \([\alpha x, \alpha y, \alpha z] \in S\)
If \([x_1, y_1, z_1] \in S\) and \([x_2, y_2, z_2] \in S\), then
\([x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S\).

Powers of 3:
Basis: \(1 \in S\)
Recursive: If \(x \in S\), then \(3x \in S\).
Recursive Definitions of Sets: General Form

Recursive definition

- *Basis step*: Some specific elements are in \(S \)
- *Recursive step*: Given some existing named elements in \(S \) some new objects constructed from these named elements are also in \(S \).
- *Exclusion rule*: Every element in \(S \) follows from basis steps and a finite number of recursive steps
Strings

• An *alphabet* Σ is any finite set of characters

• The set Σ^* of *strings* over the alphabet Σ is defined by

 – **Basis:** $\varepsilon \in \Sigma$ (ε is the empty string)

 – **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Palindromes

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome.

Recursive step:

If p is a palindrome then apa is a palindrome for every $a \in \Sigma$.
All Binary Strings with no 1’s before 0’s
All Binary Strings with no 1’s before 0’s

Basis:
\[\varepsilon \in S \]

Recursive:
\[\text{If } x \in S, \text{ then } 0x \in S \]
\[\text{If } x \in S, \text{ then } x1 \in S \]
Function Definitions on Recursively Defined Sets

Length:
\[\text{len}(\varepsilon) = 0 \]
\[\text{len}(wa) = 1 + \text{len}(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, \ a \in \Sigma \]

Concatenation:
\[x \cdot \varepsilon = x \text{ for } x \in \Sigma^* \]
\[x \cdot wa = (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma \]