Lecture 14: Induction
Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily

- Particularly useful for reasoning about programs!

```java
for(int i=0; i < n; n++) { … }
```

- Show $P(i)$ holds after i times through the loop

```java
public int f(int x) {
    if (x == 0) { return 0; }
    else { return f(x - 1); }
}
```

- $f(x) = x$ for all values of $x \geq 0$ naturally shown by induction.
Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary.

Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$$

$$
(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^3 \equiv b^3 \pmod{m}
$$

$$
(a^3 \equiv b^3 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^4 \equiv b^4 \pmod{m}
$$

...$

$$(a^{i-1} \equiv b^{i-1} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^k \equiv b^k \pmod{m}$$

The “…”s is a problem! We don’t have a proof rule that allows us to say “do this over and over”.
But there such a property of the natural numbers!

Domain: Natural Numbers

\[
P(0) \\
\forall k \ (P(k) \rightarrow P(k + 1)) \\
\therefore \forall n \ P(n)
\]
Induction Is A Rule of Inference

Domain: Natural Numbers

\[
P(0) \\
\forall k \ (P(k) \rightarrow P(k + 1)) \\
\therefore \forall n \ P(n)
\]

How do the givens prove \(P(5) \)?
Induction Is A Rule of Inference

Domain: Natural Numbers

\[P(0) \]

\[\forall k \ (P(k) \rightarrow P(k + 1)) \]

\[\therefore \ \forall n \ P(n) \]

How do the givens prove \(P(5) \)?

First, we have \(P(0) \).
Since \(P(n) \rightarrow P(n+1) \) for all \(n \), we have \(P(0) \rightarrow P(1) \).

Since \(P(0) \) is true and \(P(0) \rightarrow P(1) \), by Modus Ponens, \(P(1) \) is true.
Since \(P(n) \rightarrow P(n+1) \) for all \(n \), we have \(P(1) \rightarrow P(2) \).

Since \(P(1) \) is true and \(P(1) \rightarrow P(2) \), by Modus Ponens, \(P(2) \) is true.
Using The Induction Rule In A Formal Proof

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k + 1)) \]
\[\therefore \forall n \ P(n) \]
Using The Induction Rule In A Formal Proof

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k + 1)) \]
\[\therefore \forall n \ P(n) \]

1. Prove \(P(0) \)

4. \(\forall k \ (P(k) \rightarrow P(k+1)) \) \text{ Intro \ \(\forall \)}

5. \(\forall n \ P(n) \) \text{ Induction: 1, 4}
Using The Induction Rule In A Formal Proof

\[P(0) \]

\[\forall k \ (P(k) \rightarrow P(k + 1)) \]

\[\therefore \forall n \ P(n) \]

1. Prove \(P(0) \)
2. Let \(k \) be an arbitrary integer \(\geq 0 \)

 \[3.1 \text{ Assume } P(k) \]

 \[3.2 \text{ Prove } P(k + 1) \]
3. \(P(k) \rightarrow P(k + 1) \)
4. \(\forall k \ (P(k) \rightarrow P(k + 1)) \) \hspace{1cm} \text{Intro } \forall: 2, 3
5. \(\forall n \ P(n) \) \hspace{1cm} \text{Induction: 1, 4}
1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
 3.1. Assume that $P(k)$ is true
 3.2. ...
 3.3. Prove $P(k+1)$ is true
3. $P(k) \rightarrow P(k+1)$
 Direct Proof Rule
4. $\forall k (P(k) \rightarrow P(k+1))$
 Intro \forall: 2, 3
5. $\forall n P(n)$
 Induction: 1, 4
Translating to an English Proof

\[
P(0) \\
\forall k \ (P(k) \rightarrow P(k + 1)) \\
\therefore \forall n \ P(n)
\]

1. Prove \(P(0) \)
2. Let \(k \) be an arbitrary integer \(\geq 0 \)
 3.1. Assume that \(P(k) \) is true
 3.2. ...
 3.3. Prove \(P(k+1) \) is true
3. \(P(k) \rightarrow P(k+1) \)
4. \(\forall k \ (P(k) \rightarrow P(k+1)) \)
5. \(\forall n \ P(n) \)

\text{Base Case} \quad \text{Inductive Hypothesis} \quad \text{Inductive Step} \quad \text{Direct Proof Rule} \quad \text{Intro} \ \forall: \ 2, \ 3 \quad \text{Induction:} \ 1, \ 4
Translating To An English Proof

1. Prove $P(0)$

Base Case

2. Let k be an arbitrary integer ≥ 0
 3.1. Assume that $P(k)$ is true
 3.2. ...
 3.3. Prove $P(k+1)$ is true

Inductive Hypothesis

Inductive Step

3. $P(k) \rightarrow P(k+1)$
4. $\forall k \ (P(k) \rightarrow P(k+1))$
5. $\forall n \ P(n)$

Direct Proof Rule
Intro \forall: 2, 3
Induction: 1, 4

Conclusion

Induction Proof Template

[...Define $P(n)$...]

We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.

Base Case: [...proof of $P(0)$ here...]

Induction Hypothesis:

- Suppose that $P(k)$ is true for some $k \in \mathbb{N}$.

Induction Step:

- We want to prove that $P(k + 1)$ is true.
 [...proof of $P(k + 1)$ here...]

The proof of $P(k + 1)$ **must** invoke the IH somewhere.

So, the claim is true by induction.
Inductive Proofs In 5 Easy Steps

Proof:

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction.”

2. “Base Case:” Prove $P(0)$

3. “Inductive Hypothesis:
 Assume $P(k)$ is true for some arbitrary integer $k \geq 0$”

4. “Inductive Step:” Prove that $P(k + 1)$ is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are using it. *(Don’t assume $P(k + 1)$!!)*

5. “Conclusion: Result follows by induction”
What is $1 + 2 + 4 + \ldots + 2^n$?

- $1 = 1$
- $1 + 2 = 3$
- $1 + 2 + 4 = 7$
- $1 + 2 + 4 + 8 = 15$
- $1 + 2 + 4 + 8 + 16 = 31$

It sure looks like this sum is $2^{n+1} - 1$

How can we prove it?

We could prove it for $n = 1, n = 2, n = 3, \ldots$ but that would literally take forever.

Good that we have induction!
Prove $1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1$

Let $P(n)$ be "$1 + 2 + \ldots + 2^n = 2^{n+1} - 1$".

2. $1 = 2^0 = 2^{0+1} - 1 = 1$ \checkmark \quad P(0) \text{ holds true}
1. Let $P(n)$ be “$1 + 2 + \ldots + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.
1. Let \(P(n) \) be “\(1 + 2 + \ldots + 2^n = 2^{n+1} - 1 \)”. We will show \(P(n) \) is true for all natural numbers by induction.

2. Base Case (\(n=0 \)): \(2^0 = 1 = 2 - 1 = 2^{0+1} - 1 \) so \(P(0) \) is true.

3. Induction Hypothesis: Suppose that \(P(k) \) is true for some arbitrary integer \(k \geq 0 \).

4. Induction Step: Goal: Show \(P(k+1) \), i.e. show \(1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1 \).

Adding \(2^{k+1} \) to both sides, we get:

\[
1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1
\]

Note that \(2^{k+1} + 2^{k+1} = 2 \cdot 2^{k+1} = 2^{k+2} \).

So, we have \(1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1 \), which is exactly \(P(k+1) \).

5. Thus \(P(n) \) holds for all \(n \).
Prove \(1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1\)

1. Let \(P(n)\) be “\(1 + 2 + \ldots + 2^n = 2^{n+1} - 1\)”. We will show \(P(n)\) is true for all natural numbers by induction.

2. Base Case (\(n=0\)): \(2^0 = 1 = 2 - 1 = 2^{0+1} - 1\) so \(P(0)\) is true.

3. Induction Hypothesis: Suppose that \(P(k)\) is true for some arbitrary integer \(k \geq 0\).
Prove $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be “$1 + 2 + ... + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.

2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$.

4. Induction Step:

 Goal: Show $P(k+1)$, i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$
Let $P(n)$ be “$1 + 2 + ... + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.

2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$.

4. Induction Step:

 Goal: Show $P(k+1)$, i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

 $1 + 2 + ... + 2^k = 2^{k+1} - 1$ by IH

 Adding 2^{k+1} to both sides, we get:

 $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$

 Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

 So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly $P(k+1)$.

Prove $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$
Prove $1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be “$1 + 2 + \ldots + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.

2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$.

4. Induction Step:

 Goal: Show $P(k+1)$, i.e. show $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$

 $$1 + 2 + \ldots + 2^k + 2^{k+1} = (1+2+\ldots+2^k) + 2^{k+1} = 2^k - 1 + 2^{k+1} \text{ by the IH}$$

 Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

 So, we have $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly $P(k+1)$.

 Alternative way of writing the inductive step
Let $P(n)$ be “$1 + 2 + \ldots + 2^n = 2^{n+1} - 1$”. We will show $P(n)$ is true for all natural numbers by induction.

2. **Base Case ($n=0$):** $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. **Induction Hypothesis:** Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$.

4. **Induction Step:**

 Goal: Show $P(k+1)$, i.e. show $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$

 $$1 + 2 + \ldots + 2^k + 2^{k+1} = (1+2+ \ldots + 2^k) + 2^{k+1}$$
 $$= 2^{k+1} - 1 + 2^{k+1} \text{ by the IH}$$

 Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

 So, we have $1 + 2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly $P(k+1)$.

5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.
Prove $1 + 2 + 3 + \ldots + n = n(n+1)/2$

1. Let $P(n)$ be "$1 + 2 + \ldots + n = n(n+1)/2$".
2. Base Case: $P(0)$, "$0 = 0(0+1)/2$" is true
Prove \(1 + 2 + 3 + \ldots + n = n(n + 1)/2 \)

1. Let \(P(n) \) be “0 + 1 + 2 + \ldots + n = n(n+1)/2”. We will show \(P(n) \) is true for all natural numbers by induction.
Prove $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$

1. Let $P(n)$ be “$0 + 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$”. We will show $P(n)$ is true for all natural numbers by induction.

2. Base Case ($n=0$): $0 = 0(0+1)/2$. Therefore $P(0)$ is true.
Prove \(1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \)

1. Let \(P(n) \) be \(0 + 1 + 2 + \ldots + n = \frac{n(n+1)}{2} \). We will show \(P(n) \) is true for all natural numbers by induction.

2. **Base Case** (\(n=0 \)): \(0 = 0(0+1)/2 \). Therefore \(P(0) \) is true.

3. **Induction Hypothesis**: Suppose that \(P(k) \) is true for some arbitrary integer \(k \geq 0 \).

4. **Induction Step**:

 Goal: Show \(P(k+1) \), i.e. show

 \[
 1 + 2 + \ldots + k + (k+1) = \frac{(k+1)(k+2)}{2}
 \]

 \(P(k) \) is

 \[
 1+2+\ldots+k = \frac{k(k+1)}{2}
 \]

 Adding \(n+1 \) to both sides, we get:

 \[
 1 + 2 + \ldots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)
 \]

 Now

 \[
 \frac{n(n+1)}{2} + (n+1) = \frac{n+1}{2}(n/2 + 1) = \frac{(n+1)(n+2)}{2}
 \]

 So, we have

 \[
 1 + 2 + \ldots + n + (n+1) = \frac{(n+1)(n+2)}{2},
 \]

 Which is exactly \(P(k+1) \).

5. \(P(n) \) holds for all \(n \geq 0 \) by induction.
Prove $1 + 2 + 3 + \ldots + n = n(n+1)/2$

1. Let $P(n)$ be “$0 + 1 + 2 + \ldots + n = n(n+1)/2$”. We will show $P(n)$ is true for all natural numbers by induction.

2. **Base Case ($n=0$):** $0 = 0(0+1)/2$. Therefore $P(0)$ is true.

3. **Induction Hypothesis:** Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$.

4. **Induction Step:**

 Goal: Show $P(k+1)$, i.e. show $1 + 2 + \ldots + k + (k+1) = (k+1)(k+2)/2$

 $1 + 2 + \ldots + k + (k+1) = (1 + 2 + \ldots + k) + (k+1)$

 $= k(k+1)/2 + (k+1)$ by IH

 Now $k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2$.

 So, we have $1 + 2 + \ldots + k + (k+1) = (k+1)(k+2)/2$, which is exactly $P(k+1)$.

5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.
Another example of a pattern

- $2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$
- $2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$
- $2^4 - 1 = 16 - 1 = 15 = 3 \cdot 5$
- $2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$
- $2^8 - 1 = 256 - 1 = 255 = 3 \cdot 85$
- ...
Prove: $3 \mid (2^{2n} - 1)$ for all $n \geq 0$

1. Let $P(n)$ be "$3 \mid (2^{2n} - 1)$". We prove $P(n)$ for all $n \geq 0$.
Prove: \(3 \mid (2^{2n} - 1) \) for all \(n \geq 0 \)

1. Let \(P(n) \) be “\(3 \mid (2^{2n} - 1) \)”. We will show \(P(n) \) is true for all natural numbers by induction.
2. Base Case \((n=0)\): \(3 \mid 2^2 - 1 \quad \checkmark \)
1. Let \(P(n) \) be “\(3 \mid (2^{2n} - 1) \)”. We will show \(P(n) \) is true for all natural numbers by induction.

2. Base Case (\(n=0 \)): \(2^{2\cdot0} - 1 = 1 - 1 = 0 = 3 \cdot 0 \) Therefore \(P(0) \) is true.

3. Induction Hypothesis: Suppose that \(P(k) \) is true for some arbitrary integer \(k \geq 0 \).

4. Induction Step:

 \[
 \text{Goal: Show } P(k+1), \text{ i.e. show } 3 \mid (2^{2(k+1)} - 1)
 \]

 \[
 2^{2k} - 1 = 9 \cdot 3 \text{ for some } q.
 \]

 \[
 \text{So, } 2^{2k} = 1 + 9 \cdot 3
 \]

 \[
 2^{2(k+1)} = 2^{2k+2} = 2^{2k} \cdot 2^2 = (1 + 9 \cdot 3) \cdot 4
 \]

 \[
 (1 + 9 \cdot 3) \cdot 4 - 1 = 9 \cdot 12 + 3 = 3 (4 \cdot 9 + 1)
 \]

 \[
 \text{So, } 3 \mid 2^{2(k+1)} - 1 \text{ implies } P(k+1).
 \]

5. Thus \(P(n) \) holds for all \(n \).
Prove: \(3 \mid (2^{2n} - 1) \) for all \(n \geq 0 \)

1. Let \(P(n) \) be \(“3 \mid (2^{2n} - 1)” \). We will show \(P(n) \) is true for all natural numbers by induction.

2. Base Case (\(n=0 \)): \(2^{2\cdot0} - 1 = 1 - 1 = 0 = 3 \cdot 0 \). Therefore \(P(0) \) is true.

3. Induction Hypothesis: Suppose that \(P(k) \) is true for some arbitrary integer \(k \geq 0 \).

4. Induction Step:

 Goal: Show \(P(k+1) \), i.e. show \(3 \mid (2^{2(k+1)} - 1) \)

 By IH, \(3 \mid (2^{2k} - 1) \) so \(2^{2k} - 1 = 3j \) for some integer \(j \)

 So \(2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1 \)

 \[= 12j + 3 = 3(4j+1) \]

 Therefore \(3 \mid (2^{2(k+1)} - 1) \) which is exactly \(P(k+1) \).

5. Thus \(P(n) \) is true for all \(n \in \mathbb{N} \), by induction.
Checkerboard Tiling

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:
1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with _checkerboard. We prove $P(n)$ for all $n \geq 1$ by induction on n.

2. Base Case: $n=1 \quad \square \quad \square \quad \square \quad \square \quad \checkmark$
1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.

2. Base Case: $n=1$

3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$

4. Inductive Step: Prove $P(k+1)$

 Apply IH to each quadrant then fill with extra tile.