CSE 311: Foundations of Computing

Lecture 12: Two’s Complement, Primes, GCD

HW 3 #5:
Check your code and accept solutions & feedback.

Last time:
mod function
mod predicate
addition multiplier
n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

 If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$

 then representation is $b_{n-1}...b_2 b_1 b_0$

 $99 = 64 + 32 + 2 + 1$
 $18 = 16 + 2$

• For $n = 8$:

 $99: 0110 0011$
 $18: 0001 0010$
 $\underline{+} \quad \underline{\text{112}}$
 $\underline{=} \quad \underline{\text{0110 0110}}$
Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1} < x < 2^{n-1}$
First bit as the sign, $n-1$ bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For $n = 8$:
99: 0110 0011
-18: 1001 0010

Any problems with this representation? 0 and 0
Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \leq x < 2^{n-1}$, x is represented by the binary representation of x
Suppose that $0 < x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For $n = 8$:
99: 0110 0011
-18: 1110 1110

\[64 + 6 + 1 = 71 \]
\[2 \cdot 32 + 16 + 2 = 71 \]
Sign-Magnitude vs. Two’s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

2^n

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two’s complement
Two’s Complement Representation

• For \(0 < x \leq 2^{n-1} \), \(-x\) is represented by the binary representation of \(2^n - x\)
 — That is, the two’s complement representation of any number \(y\) has the same value as \(y\) modulo \(2^n\).

• To compute this: Flip the bits of \(x\) then add 1:
 — All 1’s string is \(2^n - 1\), so
 Flip the bits of \(x\) \(\equiv\) replace \(x\) by \(2^n - 1 - x\)
 Then add 1 to get \(2^n - x\)
Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher
Hashing

Scenario:
Map a small number of data values from a large domain \(\{0, 1, \ldots, M - 1\} \) ... into a small set of locations \(\{0, 1, \ldots, n - 1\} \) so one can quickly check if some value is present

- \(\text{hash}(x) = x \mod p \) for \(p \) a prime close to \(n \)
 - or \(\text{hash}(x) = (ax + b) \mod p \)

- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur
Choose random \(x_0, a, c, m \) and produce a long sequence of \(x_n \)’s.
Simple Ciphers

• **Caesar cipher**, $A = 1$, $B = 2$, ...
 - HELLO WORLD

• **Shift cipher**
 - $f(p) = (p + k) \mod 26$
 - $f^{-1}(p) = (p - k) \mod 26$

• **More general**
 - $f(p) = (ap + b) \mod 26$
An integer p greater than 1 is called \textit{prime} if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called \textit{composite}.
Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

\[48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \]
\[591 = 3 \cdot 197 \]
\[45,523 = 45,523 \]
\[321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \]
\[1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803 \]
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \ldots, p_n.

$$P = p_1 \cdot p_2 \cdot p_3 \cdot \ldots \cdot p_n$$

$$Q = P + 1$$

cannot be divisible by any of p_1, p_2, \ldots, p_n

Next multiple of p_1 is $p_1 + p_1 > Q$

$p_2 < p + p_2 > Q$

$p + p_n > Q$
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \ldots, p_n.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \ldots \cdot p_n$ and let $Q = P + 1$.
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list \(p_1, p_2, \ldots, p_n \).

Define the number \(P = p_1 \cdot p_2 \cdot p_3 \cdots \cdot p_n \) and let \(Q = P + 1 \).

Case 1: \(Q \) is prime: Then \(Q \) is a prime different from all of \(p_1, p_2, \ldots, p_n \) since it is bigger than all of them.

Case 2: \(Q > 1 \) is not prime: Then \(Q \) has some prime factor \(p \) (which must be in the list). Therefore \(p | P \) and \(p | Q \) so \(p | (Q - P) \) which means that \(p | 1 \).

Both cases are contradictions so the assumption is false.
Famous Algorithmic Problems

- **Primality Testing**
 - Given an integer \(n \), determine if \(n \) is prime

- **Factoring**
 - Given an integer \(n \), determine the prime factorization of \(n \)
Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413
Greatest Common Divisor

GCD(a, b):

Largest integer \(d \) such that \(d \mid a \) and \(d \mid b \)

- \(\text{GCD}(100, 125) = 25 \)
- \(\text{GCD}(17, 49) = 1 \)
- \(\text{GCD}(11, 66) = 11 \)
- \(\text{GCD}(13, 0) = 13 \)
- \(\text{GCD}(180, 252) = 12 \)

\[
\begin{array}{c}
3 \cdot 3 \cdot 5 \\
\text{GCD}(180, 252) = 12
\end{array}
\]
GCD and Factoring

\[a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200 \]

\[b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750 \]

\[\text{GCD}(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)} \]

Factoring is expensive!

Can we compute \text{GCD}(a,b) without factoring?
Useful GCD Fact

If \(a \) and \(b \) are positive integers, then

\[
\text{gcd}(a, b) = \text{gcd}(b, a \mod b)
\]
Useful GCD Fact

If a and b are positive integers, then
\[\gcd(a, b) = \gcd(b, a \mod b) \]

Proof:
By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \div b$.

Let $d = \gcd(a, b)$. Then $d | a$ and $d | b$ so $a = kd$ and $b = jd$
for some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$.
So, $d | (a \mod b)$ and since $d | b$ we must have $d \leq \gcd(b, a \mod b)$.

Now, let $e = \gcd(b, a \mod b)$. Then $e | b$ and $e | (a \mod b)$ so
\[b = me \quad \text{and} \quad (a \mod b) = ne \]
for some integers m and n.

Therefore $a = qb + (a \mod b) = qme + ne = (qm + n)e$.
So, $e | a$ and since $e | b$ we must have $e \leq \gcd(a, b)$.

It follows that $\gcd(a, b) = \gcd(b, a \mod b)$. ■
Another simple GCD fact

If a is a positive integer, \(\gcd(a,0) = a \).
Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)

```c
int gcd(int a, int b){ /* a >= b, b > 0 */
    if (b == 0) {
        return a;
    } else {
        return gcd(b, a % b);
    }
}
```

Example: GCD(660, 126)
Euclid’s Algorithm

Repeatedly use $\gcd(a, b) = \gcd(b, a \mod b)$ to reduce numbers until you get $\gcd(g, 0) = g$.

$\gcd(660, 126) =$

\[
\begin{align*}
\gcd(660, 126) &= \gcd(126, 660 \mod 126) \\
&= \gcd(126, 30) \\
&= \gcd(30, 126 \mod 30) \\
&= \gcd(30, 6) \\
&= \gcd(6, 0) \\
6 \times 60 &= 5 \times 126 + 30 \\
126 &= 4 \times 30 + 6
\end{align*}
\]
Euclid’s Algorithm

Repeatedly use $\gcd(a, b) = \gcd(b, a \mod b)$ to reduce numbers until you get $\gcd(g, 0) = g$.

$$\gcd(660, 126) = \gcd(126, 660 \mod 126) = \gcd(126, 30)$$
$$= \gcd(30, 126 \mod 30) = \gcd(30, 6)$$
$$= \gcd(6, 30 \mod 6) = \gcd(6, 0)$$
$$= 6$$
Bézout’s theorem

If a and b are positive integers, then there exist integers s and t such that

$$\gcd(a,b) = sa + tb.$$
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that
 \[\gcd(a, b) = sa + tb \]
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that

$$\text{gcd}(a, b) = sa + tb$$

Step 1 (Compute GCD & Keep Intermediary Information):

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a mod b = r</th>
<th>b</th>
<th>r</th>
<th>a = q * b + r</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>27</td>
<td>-</td>
<td>27</td>
<td>35 mod 27 = 8</td>
<td>gcd(35, 27) = gcd(27, 35 mod 27) = gcd(27, 8) (35 = 1 * 27 + 8)</td>
</tr>
</tbody>
</table>
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that
 \[\gcd(a, b) = sa + tb \]

Step 1 (Compute GCD & Keep Intermediary Information):

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$a \mod b$</th>
<th>b</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>27</td>
<td>8</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[a = q \times b + r \]

\[(35 = 1 \times 27 + 8) \]

\[(27 = 3 \times 8 + 3) \]

\[(8 = 2 \times 3 + 2) \]

\[(3 = 1 \times 2 + 1) \]
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that
 \[\gcd(a, b) = sa + tb \]

Step 2 (Solve the equations for r):

\[
\begin{align*}
 a &= q \times b + r \\
 35 &= 1 \times 27 + 8 \\
 27 &= 3 \times 8 + 3 \\
 8 &= 2 \times 3 + 2 \\
 3 &= 1 \times 2 + 1
\end{align*}
\]

\[
\begin{align*}
 r &= a - q \times b \\
 8 &= 35 - 1 \times 27
\end{align*}
\]
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q \cdot b + r$$

\[
\begin{align*}
35 &= 1 \cdot 27 + 8 \\
27 &= 3 \cdot 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1 \\
2 &= 2 \cdot 1 + 0 \\
\end{align*}
\]

$$r = a - q \cdot b$$

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2 \\
\end{align*}
\]
Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find \(s, t \) such that
 \[\gcd(a, b) = sa + tb \]

Step 3 (Backward Substitute Equations):

1. \(8 = 35 - 1 \times 27 \)
2. \(3 = 27 - 3 \times 8 \)
3. \(2 = 8 - 2 \times 3 \)
4. \(1 = 3 - 1 \times 2 \)

\[1 = 3 - 1 \times (8 - 2 \times 3) \]
\[= 3 - 8 + 2 \times 3 \]
\[= (-1) \times 8 + 3 \times 3 \]

Plug in the def of 2
Re-arrange into 3’s and 8’s
Extended Euclidean algorithm

- Can use Euclid’s Algorithm to find s, t such that $\gcd(a, b) = sa + tb$

Step 3 (Backward Substitute Equations):

\[
8 = 35 - 1 \times 27 \\
3 = 27 - 3 \times 8 \\
2 = 8 - 2 \times 3 \\
1 = 3 - 1 \times 2
\]

Plug in the def of 2

Re-arrange into 3’s and 8’s

Plug in the def of 3

Re-arrange into 8’s and 27’s

Re-arrange into 27’s and 35’s
Suppose $\text{GCD}(a, m) = 1$

By Bézout’s Theorem, there exist integers s and t such that $sa + tm = 1$.

$s \mod m$ is the multiplicative inverse of a:

$$1 = (sa + tm) \mod m = sa \mod m$$
Example

Solve: $7x \equiv 1 \pmod{26}$
Example

Solve: \(7x \equiv 1 \pmod{26} \)

\[
\begin{align*}
gcd(26, 7) &= gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1 \\
26 &= 7 \times 3 + 5 & 5 &= 26 - 7 \times 3 \\
7 &= 5 \times 1 + 2 & 2 &= 7 - 5 \times 1 \\
5 &= 2 \times 2 + 1 & 1 &= 5 - 2 \times 2 \\
1 &= 5 - 2 \times (7 - 5 \times 1) \\
&= (-7) \times 2 + 3 \times 5 \\
&= (-7) \times 2 + 3 \times (26 - 7 \times 3) \\
&= (-11) \times 7 + 3 \times 26
\end{align*}
\]

Now \((-11) \pmod{26} = 15\). So, \(x = 15 + 26k \) for \(k \in \mathbb{Z}\).
Example of a more general equation

Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 \cdot 15 \equiv 1 \pmod{26}$

By the multiplicative property of mod we have

$7 \cdot 15 \cdot 3 \equiv 3 \pmod{26}$

So any $y \equiv 15 \cdot 3 \pmod{26}$ is a solution.

That is, $y = 19 + 26k$ for any integer k is a solution.
Math mod a prime is especially nice

\(\gcd(a, m) = 1 \) if \(m \) is prime and \(0 < a < m \), so can always solve these equations mod a prime.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

mod 7