Midterm Review Session

Comic Strip:

- **Top Left Panel:**
 - A person says, "Excuse me? Should we use pens on the midterm, or pencils?"
 - Another person responds, "Use whatever you feel like."

- **Bottom Right Panel:**
 - A person holds a large crayon and says, "Sweet."
Predicate Logic
Circuits

Write boolean Algebra expression for:

1) Sum of products form

\[p \bar{q} \bar{r} + p \bar{q} r + p q \bar{r} + p q r + p q r \]

\[p \bar{r} + p \bar{r} \]

\[p \bar{r} + p r = r \]

\[r + p q \bar{r} = r + p q \]

\[\overline{p r (q + q')} \]

\[(p \implies q) \implies r \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>(p \implies q)</th>
<th>((p \implies q) \implies r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logic/Predicate Logic

Likes (p, f) Person P likes to eat food f.
Serve (r, f) Restaurant r serves the food f.

(i) Every restaurant serves a food that no one likes.
\[\forall r \exists f \left(\text{Serve}(r, f) \land \forall p \neg \text{Likes}(p, f) \right) \]

(ii) Every restaurant that serves TOFU also serves a food which RANDY does not like.
\[\forall r \left(\text{Serve}(r, \text{TOFU}) \rightarrow \exists f \left(\text{Serve}(r, f) \land \neg \text{Likes}(\text{RANDY}, f) \right) \right) \]
$P(n)$ be " $\sum_{i=0}^{n} x_i = \frac{1 - x^{n+1}}{1 - x}$ for all $x \neq 1"$.

True
Proofs

\[\text{Rational}(x) = \exists p \exists q \ x = \frac{p}{q} \land \text{int}(p) \land \text{int}(q) \land q \neq 0 \]

\(\pi \) is not rational

Disprove: if \(x, y \) are irrational then \(x + y \) is irrational.

\(\pi + (-\pi) = 0 \)

\(\pi \) is irrational

\(-\pi\) is irrational: we prove by contradiction

Suppose \(-\pi\) is rational. \(-\pi = \frac{p}{q}\) for int \(p, q \) when \(q \neq 0 \).

\(\Rightarrow \pi = \frac{-p}{q} \). \(-p, q\) are int, \(q \neq 0 \) \(\Rightarrow \) \(\pi \) is rational which

is a contradiction. Therefore \(-\pi\) is irrational.

\(\pi + (-\pi) = 0 \) disproves the claim.

\(\pi + 1 - \pi = 1 \)
Proofs

Given: \(p \) \(\therefore q \rightarrow p \land q \)

1. \(p \) \[Given\]

2.1. \(q \) \[Assumption\]

2.2. \(p \land q \) \[Intro of \(\land \) 1, 2.1\]

2. \(q \rightarrow p \land q \) \[Direct proof rule\]

Proofs
Modular Equations

\[\text{Mod: } a = b \Rightarrow ac \equiv bd \]
\[c = d \Rightarrow a + c \equiv b + d \]

\[a \equiv a \mod m \quad (\mod m) \]
\[b \equiv b \mod m \quad (\mod m) \]
\[a + b \equiv a \mod m + b \mod m \quad (\mod m) \]
\[(a + b) \mod m = (a \mod m + b \mod m) \mod m \]

Euclidean Algorithm: Part (c):
Which integers in \{1, \ldots, 83\} have multiplicative inverses modulo 7.

There are numbers \(x \) s.t. \(\gcd(x, 7) = 1 \)

- if \(\gcd(x, 7) = 1 \) then Extend Euclidean Alg gives it.
- Otherwise if \(\gcd(x, 7) \neq 1 \) \(ax \equiv 1 \mod 7 \)

1, 2, 4, 5, 7, 8

\[\Rightarrow 7 | ax - 1 \]
\[\Rightarrow 7k = ax - 1 \Rightarrow 7k + ax = -1 \]
\[\gcd(7k + ax, 7) = \text{but gcd}(x, 7) \neq 1 \]
Modular Exponentiation
Induction

1. Let $P(n)$ be "$T(n) = 2^n n!$". We prove $P(n)$ for all $n \geq 0$.

2. Base Case. Goal: $T(0) = 2^0 \cdot 0!$.

 \[T(0) = 1 = 2^0 \cdot 0! \quad \checkmark \quad P(0) \text{ holds.} \]

3. IH. Assume $P(k)$ holds for some arbitrary $k \geq 0$.

4. IS. Goal $P(k+1)$ holds. $T(k+1) = 2^{k+1} (k+1)!$.

 \[T(k+1) = 2(k+1) T(k) \quad (\text{since } k+1 \geq 1) \]

 \[= 2(k+1) 2^k k! \quad (\text{by IH}) \]

 \[= 2^{k+1} (k+1)! \quad \text{Implies } P(k+1) \]

5. Conclusion $P(n)$ holds for all $n \geq 0$.

Induction

Part (c)

Suppose \(x_1, \ldots, x_n \) are odd. Prove \(x_1 x_2 \cdots x_n \) is odd.

Let \(P(n) \) be "if \(x_1, \ldots, x_n \) are odd, then \(x_1 \cdots x_n \) is odd."

Base Case. Goal "\(x_1 \) is odd." By assumption \(x_1 \) is odd.

\(P(1) \) holds.

IH. Assume \(P(k) \) holds for some \(k \in \mathbb{Z}^+ \).

TS. Goal \(P(k+1) \) holds, i.e., \(x_1 \cdots x_{k+1} \) is odd.

By IH \(x_1 \cdots x_k \) is odd.

So \(x_1 \cdots x_k = 2q + 1 \) for some int \(q \).

\(x_{k+1} \) by problem assumption, so \(x_{k+1} = 2r + 1 \) for some int \(r \).

\(x_1 \cdots x_{k+1} = (2q+1)(2r+1) = 2(2qr + r + q) + 1 \)

Since \(2qr + r + q \) is int, \(x_1 \cdots x_{k+1} \) is odd.

This implies \(P(k+1) \).

Conclusion. \(x_1 \cdots x_n \) is odd for all \(n \).
Induction
Formal Proof

Suppose $\forall x \ P(x) \rightarrow Q(x)$, $\forall x \ Q(x) \rightarrow R(x)$, $\neg R(i)$

Proof: $\neg P(i)$.

1. $\forall x \ P(x) \rightarrow Q(x)$ [Given]
2. $\forall x \ Q(x) \rightarrow R(x)$ [Given]
3. $P(i) \rightarrow Q(i)$ [elim \forall step 1]
4. $Q(i) \rightarrow R(i)$ [elim \forall step 2]
5. $\neg R(i)$ [Given]
6. $\neg R(i) \rightarrow \neg Q(i)$ [contrapositive of 4.]
7. $\neg Q(i)$ [MP 5, 6]
8. $\neg Q(i) \rightarrow \neg P(i)$ [contrapositive of 3]
9. $\neg R(i)$ [MP 7, 8].
4 Practice Midterm Part (a)

The function takes input \((x_1, x_0)_2\) and outputs 1 if \(3 \mid (x_1, x_0)_2\).

Draw truth table:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_0)</th>
<th>(3 \mid (x_1, x_0)_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Q: $A \subseteq B \iff \overline{B} \subseteq \overline{A}$

Assum $A \subseteq B$. Let $x \in \overline{B}$ be arbitrary. So $x \not\in B$

$A \subseteq B \iff (\forall x \ x \in A \rightarrow x \in B)$

$(\forall x \ x \not\in B \rightarrow x \not\in A)$

So $x \not\in A$. And $x \in \overline{A}$

Assum $\overline{B} \subseteq \overline{A}$. Let $C = \overline{B}$, $D = \overline{A}$.

$C \subseteq D \rightarrow \overline{D} \subseteq \overline{C}$

$\overline{B} \subseteq \overline{A}$ So $B \subseteq A$.

$A \subseteq B \iff \forall x \ x \in A \rightarrow x \in B$. def of \subseteq

$\forall x \ x \not\in B \rightarrow x \not\in A$ contrapos.

$\forall x \ x \in \overline{B} \rightarrow x \in \overline{A}$ def of $\overline{B}, \overline{A}$

$\overline{B} \subseteq \overline{A}$. def of \subseteq
6 Practice Exam

Prove if \(x, y \) are rational and then \(\frac{y^2}{x-7} \) is rational.

First we show \(\frac{1}{x-7} \) is rational.

Since \(x \) is rational \(x = \frac{p}{q} \) for int \(p, q \) and \(q \neq 0 \)

\(0 \neq x-7 = \frac{p}{q} - 7 = \frac{p-7q}{q} \neq 0 \) So \(p-7q \neq 0 \)

\(\frac{1}{x-7} = \frac{q}{p-7q} \). Since \(q \) is int, \(p-7q \) int

and \(p-7q \neq 0 \), \(\frac{1}{x-7} \) is rational.

\(\frac{y^2}{x-7} = y \cdot \frac{1}{x-7} \) product of two rationals is a rational. So \(\frac{y^2}{x-7} \) is a rational.
Say \(k \) is a square modulo \(m \) if and only if \(\exists j \) s.t. \(k \equiv j^2 \pmod{m} \).

Let \(T = \{ m : m = n^2 + 1 \text{ for some int } n \} \).

(a) Prove if \(m \in T \), then \(-1\) is a square mod \(m \).

Since \(m \in T \), \(m = n^2 + 1 \) for some int \(n \).

Goal: \(-1 \equiv j^2 \pmod{m} \) for some int \(j \).

\[m = n^2 + 1 \implies m = n^2 - (-1) \implies m \mid n^2 - (-1) \]

\[n^2 \equiv -1 \pmod{m} \]

(b) If \(m, k \) if \(m \in T \) and \(k \) is a square mod \(m \), then \(-k \) is also a square mod \(m \).

Part (a):

\(m \in T \implies m = n^2 + 1 \) for some int \(n \)

\(-1 \equiv n^2 \pmod{m} \)

\(k \) is a square, so \(k \equiv j^2 \pmod{m} \) for some int \(j \).

Goal: \(-k \equiv q^2 \pmod{m} \) for some int \(q \).

by multiplication. Thm: \(-k \equiv j^2 \cdot n^2 = (jn)^2 \pmod{m} \).
Prove for any prime \(p \geq 2 \) the equation \(x^2 \equiv p+1 \pmod{p} \)
has exactly two solutions when \(0 \leq x \leq p-1 \).

Hint: Remember \(x^2 - 1 = (x-1)(x+1) \).

\[
x^2 \equiv p+1 \pmod{p} \Rightarrow x^2 - 1 \equiv p = 0 \pmod{p} \\
(x-1)(x+1) \equiv 0 \pmod{p}.
\]

If \(x = 1 \) then \(x^2 - 1 = 0 \equiv 0 \pmod{p} \)
If \(x = p-1 \) then \(x^2 - 1 = p^2 - 2p \equiv 0 \pmod{p} \).

We prove by contradiction.

Suppose \(x \) is a solution and \(x \neq 1, p-1 \).

\[
(x-1)(x+1) \equiv 0 \Rightarrow p \mid (x-1)(x+1)
\]

Since \(p \) is a prime by unique prime factorization the \(p \) is
in prime factors of \(x-1 \) or \(x+1 \). So \(p \mid x-1 \) or \(p \mid x+1 \).

But we know \(0 \neq x-1, x+1 < p \). This is not possible.

So there is no solution besides \(p-1, 1 \).
Short(x, y) be x is shorter than y.

Ramch is the tallest person.
\(\forall x \ (x \neq \text{Ramch} \rightarrow \text{Shorter}(x, \text{Ramch})) \)

? \(\exists x \ (\) \(\forall x \ \neg \text{Short}(\text{Ramch}, x) \) \(\) \(\neg (A < B) \) \(A > B \) \(\) \() \)
Modular Eq.

\[a \equiv a + m \pmod{m} \]

\[m \equiv 0 \pmod{m} \]

\[a \equiv a \pmod{m} \quad \text{iff} \quad m \mid a - a = 0 \]

\[a + m \equiv a \pmod{m} \quad \text{additive} \]

\[a \equiv b \pmod{m} \quad \text{iff} \quad m \mid a - b \]