1. Strong Induction

(a) Prove that, for all \(n \in \mathbb{N} \), every \(n \) has an unsigned binary representation.

Solution:
Let \(P(n) \) be “\(n \) has an unsigned binary representation”. We will prove \(P(n) \) for all integers \(n \in \mathbb{N} \) by induction.

Base Case \((n = 0)\): The unsigned binary representation of 0 is \(0_2 \), so \(P(0) \) holds.

Induction Hypothesis: Assume that \(P(j) \) holds for all integers \(0 \leq j \leq k \) for some arbitrary \(k \in \mathbb{N} \).

Induction Step: Goal: Show \(P(k + 1) \), i.e., \(k + 1 \) has an unsigned binary representation

Let \(2^\ell \) be the largest power of two not greater than \(k + 1 \) (i.e. \(\ell = \lceil \log_2(n) \rceil \)). Let \(r = k + 1 - 2^\ell \), the remainder.

Note that \(r < 2^\ell \), so \(r \) has some binary representation \(r_2 \) [by the Induction Hypothesis].

Then \(1r_2 \) is the binary expansion for \(k + 1 \). This proves \(P(k + 1) \).

Conclusion: \(P(n) \) holds for all integers \(n \in \mathbb{N} \) by induction.

(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function \(f \):

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n - 1) - f(n - 2) \quad \text{for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, \(f(n) \), of rabbits that Cantelli owns in year \(n \).

Solution:
Let \(P(n) \) be “\(f(n) = n \)”. We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \) by strong induction on \(n \).

Base Case \((n = 0)\): \(f(0) = 0 \) by definition. So, \(P(0) \) holds.

Induction Hypothesis: Assume that for some arbitrary integer \(k \geq 0 \), \(P(j) \) holds for all \(0 \leq j \leq k \).

Induction Step: We show \(P(k + 1) \).

Case 1 \((k = 0)\): Then, by definition \(f(k + 1) = f(1) = 1 \). So, \(P(k + 1) \) holds.

Case 2\((k \geq 1)\): Since \(k + 1 \geq 2 \), by definition of \(f \),

\[
 f(k + 1) = 2f(k) - f(k - 1)
\]

Since \(0 \leq k - 1, k \leq k \), by induction hypothesis,

\[
 f(k + 1) = 2(k) - (k - 1) = k + 1
\]

This proves \(P(k + 1) \).

Therefore, \(P(n) \) is true for all \(n \in \mathbb{N} \).
2. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then $\text{append}(c, X)$ is a string.

Recall the following recursive definition of the function len:

\[
\begin{align*}
\text{len}("") &= 0 \\
\text{len}(\text{append}(c, X)) &= 1 + \text{len}(X)
\end{align*}
\]

Now, consider the following recursive definition:

\[
\begin{align*}
\text{double}("") &= "" \\
\text{double}(\text{append}(c, X)) &= \text{append}(c, \text{append}(c, \text{double}(X)))
\end{align*}
\]

Prove that for any string X, $\text{len}(\text{double}(X)) = 2\text{len}(X)$.

Solution:

For a string X, let $P(X)$ be "\text{len}(\text{double}(X)) = 2\text{len}(X)". We prove $P(X)$ for all strings X by structural induction.

Base Case. We show $P(\"\")$ holds. By definition $\text{len}(\text{double}(\"\")) = \text{len}(\"\") = 0$. On the other hand, $2\text{len}(\"\") = 0$ as desired.

Induction Hypothesis. Suppose $P(X)$ holds for some string X.

Induction Step. We show that $P(\text{append}(c, X))$ holds for any character c.

\[
\begin{align*}
\text{len}(\text{double}(\text{append}(c, X))) &= \text{len}(\text{append}(c, \text{append}(c, \text{double}(X)))) \\
&= 1 + \text{len}(\text{append}(c, \text{double}(X))) \\
&= 1 + 1 + \text{len}(\text{double}(X)) \\
&= 2 + 2\text{len}(X) \\
&= 2(1 + \text{len}(X)) \\
&= 2(\text{len}(\text{append}(c, X))) \\
\end{align*}
\]

This proves $P(\text{append}(c, X))$.

Thus, $P(X)$ holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: \bullet is a Tree.

Recursive Step: If L is a Tree and R is a Tree then $\text{Tree}(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

\[
\begin{align*}
\text{leaves}(\bullet) &= 1 \\
\text{leaves}(\text{Tree}(\bullet, L, R)) &= \text{leaves}(L) + \text{leaves}(R)
\end{align*}
\]

Also, recall the definition of size on trees:

\[
\begin{align*}
\text{size}(\bullet) &= 1 \\
\text{size}(\text{Tree}(\bullet, L, R)) &= 1 + \text{size}(L) + \text{size}(R)
\end{align*}
\]

Prove that $\text{leaves}(T) \geq \text{size}(T)/2$ for all Trees T.
Solution:

In this problem, we define a strengthened predicate. For a tree \(T \), let \(P \) be \(\text{leaves}(T) \geq \text{size}(T)/2 + 1/2 \). We prove \(P \) for all trees \(T \) by structural induction.

Base Case. We show that \(P(\cdot) \) holds. By definition of \(\text{leaves}(\cdot) \), \(\text{leaves}(\bullet) = 1 \) and \(\text{size}(\bullet) = 1 \). So, \(\text{leaves}(\bullet) = 1 \geq 1/2 + 1/2 = \text{size}(\bullet)/2 + 1/2 \).

Induction Hypothesis: Suppose \(P(L) \) and \(P(R) \) hold for trees \(L, R \).

Induction Step: We prove \(P(\text{Tree}(\bullet, L, R)) \) holds.

\[
\begin{align*}
\text{leaves}(\text{Tree}(\bullet, L, R)) &= \text{leaves}(L) + \text{leaves}(R) & [\text{By Definition of leaves}] \\
&\geq \left(\text{size}(L)/2 + 1/2\right) + \left(\text{size}(R)/2 + 1/2\right) & [\text{By IH}] \\
&= 1 + \text{size}(\text{Tree}(\bullet, L, R))/2 & [\text{By Definition of size}] \\
&\geq \text{size}(\text{Tree}(\bullet, L, R))/2 + 1/2
\end{align*}
\]

This proves \(P(\text{Tree}(\bullet, X, R)) \).

Thus, the \(P(T) \) holds for all trees \(T \).