1. Induction with Sums
 (a) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_1, \ldots, a_n and b_1, \ldots, b_n, such that $\forall (i \in [n]). a_i \leq b_i$, then it must be that:
 $\sum_{i=1}^{n} a_i \leq \sum_{i=1}^{n} b_i$

 (b) For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or
 $S_n = \sum_{i=1}^{n} i^2.$
 For all $n \in \mathbb{N}$, prove that $S_n = \frac{1}{6}n(n+1)(2n+1)$.

 (c) Define the triangle numbers as $\triangle_n = 1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_n = \frac{n(n+1)}{2}$.
 Prove the following equality for all $n \in \mathbb{N}$:
 $\sum_{i=0}^{n} i^3 = \triangle_n^2$

2. Induction
 (a) Prove that $9 \mid n^3 + (n+1)^3 + (n+2)^3$ for all $n > 1$ by induction.

 (b) Prove that $6n + 6 < 2^n$ for all $n \geq 6$.

 (c) Define
 $H_i = 1 + \frac{1}{2} + \cdots + \frac{1}{i}$
 Prove that $H_{2^n} \geq 1 + \frac{n}{2}$ for $n \in \mathbb{N}$.

1