CSE 311: Foundations of Computing I
Homework 1 (due Wednesday, October 5 at 6:00 PM)

Directions: Read the Grading Guidelines page before you start working on your solutions. Write up carefully argued solutions to the following problems. The first task is to be complete and correct. The more subtle task is to keep it simple and succinct. Your solution should be clear enough that it should explain to someone who does not already understand the answer why it works. You may use any results proven in lecture without proof. Anything else must be argued rigorously. Unless otherwise specified, all answers are expected to be given in closed form.

1. Translation into Logic (18 points)
Translate these English statements into logical language, decomposing each sentence as much as possible into atomic propositions.

(a) [10 Points] Use the same atomic propositions to turn all of these sentences into logic.
 - i) If the stack is empty, you can push but not pop,
 - ii) If the stack is full, you can pop but not push.
 - iii) If the stack is neither full nor empty, you can both push and pop.

(b) [3 Points] One of Hilary Clinton, Donald Trump, or a third party candidate will be the next president of the United States.

(c) [5 Points] You can either take the highway or surface streets to go to work; if you take the highway and there is no accident you will arrive on time but if there is an accident you will arrive late unless you take surface streets.

2. Nonequivalent Logical Statements (12 points)
Use truth assignments to show that the two propositions in each part are not logically equivalent:

(a) [3 Points] $p \lor q$ vs. $\neg(p \land q)$.

(b) [3 Points] $(p \oplus q) \lor (p \oplus r)$ vs. $p \lor q \lor r$.

(c) [3 Points] $(p \rightarrow q) \rightarrow (q \rightarrow p)$ vs. $(q \rightarrow p) \rightarrow (p \rightarrow q)$.

(d) [3 Points] $(((p \rightarrow q) \rightarrow r) \rightarrow s) \rightarrow p$ vs. $p \rightarrow (q \rightarrow (r \rightarrow (s \rightarrow p)))$.

3. All You Need is Nor, Nor, Nor... (20 points)

The **NOR** connective takes two propositions and evaluates to True when both propositions are False and evaluates to False otherwise. In circuit diagrams, the gate for **NOR** is denoted by

![NOR gate](image)

The **NOR** of \(p \) and \(q \) is written as \(p \downarrow q \). Demonstrate that we can construct all the other connectives by just using **NOR** by writing propositional formulae for each of the following while only using **NOR** connectives:

Hint: It’s okay to use a single input/output more than once.

(a) [5 Points] \(\neg p \)

(b) [5 Points] \(p \lor q \)

(c) [5 Points] \(p \land q \)

(d) [5 Points] \(p \leftrightarrow q \)

4. The Majority Wins! (10 points)

Find a compound proposition involving the propositional variables \(p, q, \) and \(r \) that is true precisely when a majority of \(p, q, \) and \(r \) are true. Explain why your answer works.

5. **MMMM** Good! (10 points)

Using only... AND Gates, OR Gates, and Inverters (NOT Gates),

![Gates](image)

draw the diagram of a circuit with three inputs that computes the function \(M(p, q, r) \), where the following define \(M\):

\[
M(T, q, r) := q \\
M(F, q, r) := r
\]
6. Carding Tricks (10 points)

(a) [5 Points] You are presented with four two-sided (one green, one white) cards:

```
E  3
K  8
```

On the green side of each card is a letter, and on the white side is a number.
Consider the following rule:

If a card has a vowel on one side, then it has an even number on the other side.

Which cards must be turned over to check if the rule is true? Explain your answer in a few sentences.

(b) [5 Points] The manager of a local club suspects that the bartender (the only one who gives both non-alcoholic and alcoholic drinks in the bar) isn’t checking IDs correctly. For simplicity, assume everyone in the bar is either drinking coke or beer. Which people do you need to talk with to make sure she hasn’t broken the law?: the ones with coke? beer? the ones under 21? over?

Hint: It might be useful to look over this question after you’ve solved both parts.

7. The Curious Case of The Lying TAs (10 points)

A new UW CSE student wandered around the Paul Allen building on their first day in the major. They found (as many do) that there is a secret room in its basements. On the door of this secret room is a sign that says:

All ye who enter, beware! Every inhabitant of this room is either a TA who always lies or a student who always tells the truth!

(a) [5 Points] The CSE student walked into the room, and two inhabitants walked up to the student. One of them said “at least one of us is a TA.” Determine (with justification) all the possibilities for each of the two inhabitants.

(b) [5 Points] Three inhabitants walk up to the CSE student and surround the UW CSE student. One of them says “every TA in this circle has a TA to his immediate right.” Determine (with justification) all the possibilities for each of the three inhabitants.
8. EXTRA CREDIT: XNORing (-NoValue- points)

For two bits a and b, we define $\text{XNOR}(a, b) = \neg(a \oplus b)$. You are given two memory registers, each with the same number of bits. You have an operation, $\text{XNOR}(R_1, R_2)$, which takes two registers, R_1 and R_2, performs bitwise XNOR between them, and stores the result in R_1.

Show how you can swap the contents of the two registers using a sequence of XNORs without temporary memory registers.