CSE 311: Foundations of Computing I

Set Definitions

Common Sets
- \(\mathbb{N} = \{0, 1, 2, \ldots \} \) is the set of Natural Numbers.
- \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \) is the set of Integers.
- \(\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \right\} \) is the set of Rational Numbers.
- \(\mathbb{R} \) is the set of Real Numbers.

Containment, Equality, and Subsets
Let \(A, B \) be sets. Then:
- \(x \in A \) ("\(x \) is an element of \(A \)"") means that \(x \) is an element of \(A \).
- \(x \notin A \) ("\(x \) is not an element of \(A \)"") means that \(x \) is not an element of \(A \).
- \(A \subseteq B \) ("\(A \) is a subset of \(B \)"") means that all the elements of \(A \) are also in \(B \).
- \(A \supseteq B \) ("\(A \) is a superset of \(B \)"") means that all the elements of \(B \) are also in \(A \).
- \((A = B) \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x (x \in A \leftrightarrow x \in B) \)

Set Operations
Let \(A, B \) be sets. Then:
- \(A \cup B \) is the union of \(A \) and \(B \). \(A \cup B = \{x : x \in A \lor x \in B\} \).
- \(A \cap B \) is the intersection of \(A \) and \(B \). \(A \cap B = \{x : x \in A \land x \in B\} \).
- \(A \setminus B \) is the difference of \(A \) and \(B \). \(A \setminus B = \{x : x \in A \land x \notin B\} \).
- \(A \oplus B \) is the symmetric difference of \(A \) and \(B \). \(A \oplus B = \{x : x \in A \oplus x \in B\} \).
- \(\overline{A} \) is the complement of \(A \). If we restrict ourselves to a "universal set", \(\mathcal{U} \), (a set of all possible things we’re discussing), then \(\overline{A} = \{x \in \mathcal{U} : x \notin A\} = \{x \in \mathcal{U} : \neg(x \in A)\} \).

Set Constructions
Let \(A, B, C, D \) be sets and \(P \) be a predicate. Then:
- \(S = \{x : P(x)\} \) is notation which means that \(S \) is a set that contains all objects \(x \) (in the domain of \(P \)) with property \(P \).
- \(A \times B \) is the cartesian product of \(A \) and \(B \). \(A \times B = \{(a, b) : a \in A, b \in B\} \).
- \([n] \) ("brackets \(n \)") is the set of natural numbers from 1 to \(n \). \([n] = \{x \in \mathbb{N} : 1 \leq x \leq n\} \).
- \(\mathcal{P}(A) \) is the power set of \(A \). \(\mathcal{P}(A) = \{S : S \subseteq A\} \).