Spring 2015
Lecture 16: Strong induction
Evan covering office hours today [CSE 624, 2:30-3:30pm]

MIDTERM FRIDAY (IN THIS ROOM, USUAL TIME)

Closed book.
One page (front and back) of hand-written notes allowed.
Exam includes induction and strong induction!
Homework #5 is up now, but due on Friday, May 15th.

Review sessions:

James Wednesday @ 6PM [probably in EEB 105]
Additional: ...?
review: induction is a rule of inference

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k + 1)) \]
\[\therefore \forall n \ P(n) \]

Domain: Natural Numbers
1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
 3. Assume that $P(k)$ is true
 4. ...
 5. Prove $P(k+1)$ is true

6. $P(k) \rightarrow P(k+1)$ \hspace{1cm} Direct Proof Rule
7. $\forall k \ (P(k) \rightarrow P(k+1))$ \hspace{1cm} Intro \forall from 2-6
8. $\forall n \ P(n)$ \hspace{1cm} Induction Rule 1&7
review: format of an induction proof

\[P(0) \]
\[\forall k \ (P(k) \rightarrow P(k + 1)) \]

\[\therefore \forall n \ P(n) \]

1. Prove P(0)
2. Let k be an arbitrary integer \(\geq 0 \)
3. Assume that P(k) is true
4. ...
5. Prove P(k+1) is true
6. \(P(k) \rightarrow P(k+1) \)
7. \(\forall k \ (P(k) \rightarrow P(k+1)) \)
8. \(\forall n \ P(n) \)
Proof:

1. “We will show that \(P(n) \) is true for every \(n \geq 0 \) by induction.”
2. “Base Case:” Prove \(P(0) \)
3. “Inductive Hypothesis:”

 Assume \(P(k) \) is true for some arbitrary integer \(k \geq 0 \)
4. “Inductive Step:” Want to prove that \(P(k+1) \) is true:

 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are using it.
 (Don’t assume \(P(k+1) \) !)
5. “Conclusion: Result follows by induction.”
Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:
Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

Place piece in the center and recurse on each quadrant!
Inductive proof:

\[P(n) = "\text{A } 2^n \times 2^n \text{ checkerboard with one piece removed can be tiled by } \square \text{ pieces.} \]

Base case (Zen): \(n = 0 \). An empty board can be tiled with no pieces \(\Rightarrow P(0) \)

Alternate base case: \(n = 1 \). A \(2 \times 2 \) board with one square missing can be tiled with one piece \(\Rightarrow P(1) \)

Inductive hypothesis: Assume \(P(k) \) for some \(k \geq 0 \).

Inductive step: Consider any \(2^{k+1} \times 2^{k+1} \) board with one square missing. There exists a way to place a piece in the center so that each quadrant is a \(2^k \times 2^k \) board with one square missing. By IH, there is a way to tile each of those four boards. Thus we can tile the \(2^{k+1} \times 2^{k+1} \) board as well. We conclude that \(P(k + 1) \) holds.

By induction, \(P(n) \) holds for every \(n \geq 1 \) (or \(n \geq 0 \) if we started there).
Let $P(n)$ be "$3^n \geq n^2$" for all $n \geq 3$.

We go by induction on n.

Base Case:

$3^3 = 27 \geq 9 = 3^2$. So, $P(3)$ is true.

Induction Hypothesis:

Suppose $P(k)$ is true for some arbitrary $k \geq 3$.

Induction Step:

Note that $3^{k+1} = 3(3^k) \geq 3(k^2)$, by the IH.

Furthermore, note that $(k+1)^2 = k^2 + 2k + 1$.

Note that since $k \geq 3$, $k^2 \geq 3k \geq 2k$. And similarly, $k^2 \geq 1$.

So, continuing from above:

$3^{k+1} = 3(3^k) \geq 3(k^2) = k^2 + k^2 + k^2 \geq k^2 + 2k + 1 = (k+1)^2$

Since this is exactly $P(k+1)$, we’ve shown $P(k) \rightarrow P(k+1)$

Thus, $P(n)$ is true for all $n \geq 3$, by induction.
prove $2n^3 + 2n - 5 \geq n^2$ for all $n \geq 2$.

Note that $2(n+1)^3 = 2n^3 + 6n^2 + 6n + 2$.

Let $P(n)$ be “$2n^3 + 2n - 5 \geq n^2$” for all $n \geq 2$.

We go by induction on n.

Base Case:

$2*2^3 + 2*2 - 5 = 45 \geq 4 = 2^2$. So, $P(0)$ is true.

Induction Hypothesis:

Suppose $P(n)$ is true for some arbitrary $n \geq 2$.

Induction Step: Then, note that...

\[
(n+1)^2 \leq n^2 + 2n + 1 \\
\leq (2n^3 + 2n - 5) + 2n + 1 \quad \text{(by IH)} \\
\leq (2n^3 + 4n + 1) - 5 \quad \text{(Re-arranging)} \\
\leq (2n^3 + 6n^2 + 6n + 2) - 5 \quad \text{(4n + 1 \leq 6n + 6n^2 + 2)} \\
\leq 2(n+1)^3 - 5 \quad \text{(Factoring)} \\
\leq 2(n+1)^3 + 2n - 5 \quad \text{(0 \leq 2n)}
\]

Since this is exactly $P(k+1)$, we’ve shown $P(k) \rightarrow P(k+1)$

Thus, $P(n)$ is true for all $n \geq 3$, by induction.
strong induction

\[P(0) \]
\[\forall k \left(\left(P(0) \land P(1) \land P(2) \land \cdots \land P(k) \right) \rightarrow P(k + 1) \right) \]
\[\therefore \forall n P(n) \]

Follows from ordinary induction applied to
\[Q(n) = P(0) \land P(1) \land P(2) \land \cdots \land P(n) \]
1. By induction we will show that $P(n)$ is true for every $n \geq 0$

2. Base Case: Prove $P(0)$

3. Inductive Hypothesis:
 Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k

4. Inductive Step:
 Prove that $P(k + 1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)

5. Conclusion: Result follows by induction
every integer at least 2 is the product of primes

We argue by strong induction.

\[P(n) = \text{“n can be expressed as a product of primes”} \text{ for } n \geq 2. \]

Base Case:

Note that 2 is prime; so, we can express it as “2” which is a product of primes.

Induction Hypothesis:

Suppose \(P(2) \land P(3) \land \cdots \land P(k) \) is true for some \(k \geq 2 \).

Induction Step:

We go by cases.

Suppose \(k+1 \) is prime. Then, “\(k+1 \)” is a product of primes.

Suppose \(k+1 \) is composite. Then, \(k+1 = ab \) for some \(a \) and \(b \) such that \(1 < a, b < k+1 \).

By our IH, we know \(a = p_1 p_2 \cdots p_m \) and \(b = q_1 q_2 \cdots q_n \).

So, \(k+1 = ab = \text{“}p_1 p_2 \cdots p_m q_1 q_2 \cdots q_n\text{”} \), which is a product of primes.

Thus, our claim is true for \(n \geq 2 \) by strong induction.
recursive definition of functions

• \(F(0) = 0; \ F(n + 1) = F(n) + 1 \) for all \(n \geq 0 \)

• \(G(0) = 1; \ G(n + 1) = 2 \times G(n) \) for all \(n \geq 0 \)

• \(0! = 1; \ (n + 1)! = (n + 1) \times n! \) for all \(n \geq 0 \)

• \(H(0) = 1; \ H(n + 1) = 2^{H(n)} \) for all \(n \geq 0 \)
Fibonacci numbers

\[f_0 = 0 \]
\[f_1 = 1 \]
\[f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2 \]
Theorem: \(f_n < 2^n \) for all \(n \geq 2 \).

\[P(n) = "f_n < 2^n" \]

Base case: \(f_2 = f_1 + f_0 = 1 < 4 = 2^2 \Rightarrow P(2) \)

(Strong) Induction hypothesis: Assume \(P(2), P(3), \ldots, P(n) \)

Inductive step: \(f_{n+1} = f_n + f_{n-1} \)

\[\leq 2^n + 2^{n-1} \quad (\text{IH}) \]

\[< 2 \cdot 2^n = 2^{n+1} \]

So by induction, \(P(n) \quad \forall n \geq 2 \).