Solving Modular Equivalences

Solving a Normal Equation
First, we discuss an analogous type of question when using normal arithmetic.

Question: Solve the equation $27y = 12$.

Solution: We divide both sides by 27 to get $y = \frac{12}{27}$.

Solution: We multiply both sides by $1/27$ to get $y = \frac{12}{27}$.

These solutions are two ways of saying the same thing.

Solving a Modular Congruence
Now, we consider a congruence instead:

Question: Solve the congruence $27y \equiv 10 \pmod{4}$.

Note: We can’t just divide both sides. For example, consider $5 \equiv 10 \pmod{5}$. If we were to divide both sides by 5, we would get $1 \equiv 2 \pmod{5}$ which is definitely false.

Another way of looking at this would be to ask the question What is $\frac{1}{5} \pmod{5}$? It really doesn’t make any sense, because remainders should always be integers.

So, instead, we need to create machinery to multiply by whatever the correct inverse is mod a number.

Inverses
If $xy = 1$, we say that y is the “multiplicative inverse of x”.

We have a similar idea mod m: If $xy \equiv 1 \pmod{m}$, we say y is the "multiplicative inverse of x modulo $m".

How do we compute the multiplicative inverse of x modulo m?
By definition, $xy \equiv 1 \pmod{m}$ iff $xy + tm = 1$ for some $t \in \mathbb{Z}$. We know by Bezout’s Theorem that we can find y and t such that $xy + tm = \gcd(x, m)$. Said another way: If $\gcd(x, m) = 1$, then we can find a multiplicative inverse!

To actually compute the multiplicative inverse, we use the Extended Euclidean Algorithm. For example, consider the equation we were trying to solve above: $27y \equiv 10 \pmod{4}$.

First, we find the multiplicative inverse of 27 modulo 4. That is, we find a y such that $27y \equiv 1 \pmod{4}$.

To do this, we first note that the $\gcd(27, 4) = \gcd(4, 3) = \gcd(3, 1) = \gcd(1, 0) = 1$, which means an inverse does exist!
Now, we write out the equations:

\[
27 = 6 \cdot 4 + 3 \\
4 = 1 \cdot 3 + 1
\]

Solving each equation for the remainder:

\[
3 = 27 - 6 \cdot 4 \\
1 = 4 - 1 \cdot 3
\]

Backward substituting, we get:

\[
1 = 4 - 1 \cdot 3 \\
= 4 - 1 \cdot (27 - 6 \cdot 4) \\
= 7 \cdot 4 + (-1) \cdot 27
\]

So, we have found that \(-1 \mod 4 = 3 \mod 4\) is the multiplicative inverse of 27 modulo 4. We can verify this by taking \((27 \cdot 3) \mod 4 = 81 \mod 4 = 1\).

Solving the original equation

Now, we need to solve the original equation: \(27y \equiv 10 \pmod{4}\).

We know from above that \(27 \cdot 3 \equiv 1 \pmod{4}\). So, multiplying both sides by 10 (which works, because of a theorem from lecture; note that this is different than the theorem from the homework!), we get:

\[
27 \cdot 30 \equiv 10 \pmod{4}
\]

Since 30 \(\mod 4 = 2\), we have \(27 \cdot 2 \equiv 10 \pmod{4}\). It follows that \(x = 2\) solves the original equation.

Other Solutions?

We’ve shown that \(x = 2\) is one possible solution. The obvious follow-up question is “are there any others?” There are! Since \(2 + 4k \equiv 2 \pmod{4}\) for all \(k \in \mathbb{Z}\), those are all solutions as well.