Fall 2015

Lecture 24: DFAs, NFAs, and regular expressions
• FSMs with output at states
• State minimization
Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states.
nondeterministic finite automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol--- can have 0 or >1
 - Also can have edges labeled by empty string ε
- **Definition:** x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state
building an NFA

binary strings that have
- an even # of 1’s
- or contain the substring 111 or 1000
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...
build an NFA for \((01 \cup 1)^*0\)
$$(01 \cup 1)^*0$$
Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language.
Conversion of NFAs to DFAs

Proof Idea:

– The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
– There will be one state in the DFA for each *subset* of states of the NFA that can be reached by some string
New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε

Conversion of NFAs to a DFAs
For each state of the DFA corresponding to a set S of states of the NFA and each letter a

- Add an edge labeled a to state corresponding to T, the set of states of the NFA reached by
 starting from some state in S, then
 following one edge labeled by a, and
 then following some number of edges labeled by ε

- T will be \emptyset if no edges from S labeled a exist
Final states for the DFA

- All states whose set contain some final state of the NFA
example: NFA to DFA

NFA

DFA
example: NFA to DFA
example: NFA to DFA
example: NFA to DFA
exponential blow-up in simulating mondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – \(n \)-state NFA yields DFA with at most \(2^n \) states
 – We saw an example where roughly \(2^n \) is necessary
 Is the \(n^{th} \) char from the end a 1?

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms
1 in third position from end

with NFA size n.

```
A -- 1 -- B --> 0,1 -- C --> 0,1 -- D
```

```
\begin{itemize}
  \item A, D
  \item A, B
  \item A, B, D
  \item A, B, C
  \item A, C, D
  \item A, B, C, D
\end{itemize}
```
1 in third position from end
1 in third position from end
We have shown how to build an optimal DFA for every regular expression:

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA if and only if it has a regular expression.

We show the other direction of the proof at the end of these lecture slides.
languages and machines!
languages and machines!

Warmup: All finite languages are regular.

{001, 10, 12}
DFAs recognize any finite language

Exercise: Hard code it into the NFA.

\[L = \{ w_1, w_2, \ldots, w_k \} \]

\[w_1 \cup w_2 \cup \cdots \cup w_k \]
languages and machines!

Warmup 2: Surprising example here

0* DFA NFA Regex
Main Event: Prove there is a context-free language that isn’t regular.
DFAs \equiv regular expressions

Theorem: A language is recognized by a DFA if and only if it has a regular expression

Proof: We already saw: RegExp \rightarrow NFA \rightarrow DFA

Now: NFA \rightarrow RegExp

(Enough to show this since every DFA is also an NFA.)
generalized NFAs

• Like NFAs but allow
 – Parallel edges
 – Regular Expressions as edge labels
 NFAs already have edges labeled ε or a

• An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A

• A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x
starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A
only two simplification rules

- **Rule 1:** For any two states q_1 and q_2 with parallel edges (possibly $q_1 = q_2$), replace

 \[q_1 \xrightarrow{A} q_2 \quad \text{by} \quad q_1 \xrightarrow{A \cup B} q_2 \]

- **Rule 2:** Eliminate non-start/final state q_3 by replacing all

 \[q_1 \xrightarrow{A} q_3 \xrightarrow{B} q_2 \quad \text{by} \quad q_1 \xrightarrow{A \cup B} q_2 \]

for every pair of states q_1, q_2 (even if $q_1 = q_2$)
Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from \{0,1,2\}^* where the digits mod 3 sum of the digits is 0

\[\text{DFA Diagram} \]
Label edges with regular expressions

\[
\begin{align*}
&t_0 \rightarrow t_1 \rightarrow t_0 : 10*2 \\
&t_0 \rightarrow t_1 \rightarrow t_2 : 10*1 \\
&t_2 \rightarrow t_1 \rightarrow t_0 : 20*2 \\
&t_2 \rightarrow t_1 \rightarrow t_2 : 20*1
\end{align*}
\]
finite automaton without t_1

R_1: $0 \cup 10^*2$
R_2: $2 \cup 10^*1$
R_3: $1 \cup 20^*2$
R_4: $0 \cup 20^*1$

R_5: $R_1 \cup R_2 R_4^* R_3$

Final regular expression:

$$(0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$$