Fall 2015
Lecture 22: Finite state machines
review: finite state machines

- States
- Transitions on inputs
- Start state and final states
- The language recognized by a machine is the set of strings that reach a final state

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₀</td>
<td>S₀</td>
<td>S₁</td>
</tr>
<tr>
<td>S₁</td>
<td>S₀</td>
<td>S₂</td>
</tr>
<tr>
<td>S₂</td>
<td>S₀</td>
<td>S₃</td>
</tr>
<tr>
<td>S₃</td>
<td>S₃</td>
<td>S₃</td>
</tr>
</tbody>
</table>
applications of FSMs (aka finite automata)

- Implementation of regular expression matching in programs like `grep`
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cache-coherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs
applications of FSMs (aka finite automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs provide worlds to explore
 - Character AI
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition
Wander the Maze

- Reach Central Base

Chase Pac-Man

- Spot Pac-Man
- Lose Pac-Man
- Pac-Man Eats Power Pellet

Return to Base

- Power Pellet Expires
- Eaten by Pac-Man

Flee Pac-Man

- Pac-Man Eats Power Pellet
Timeout after two maximum segment lifetimes (2*MSL)
what language does this machine recognize?

$L = \{\text{strings with odd number of 0s and odd } \# \text{ of 1s}\}$

$L_2 = \{\text{odd } \# \text{ of 1s}\}$

$L_3 = \{\text{even } \# \text{ of 0s}\}$

$\forall n, k_n(s) \geq n$

$P(n) \iff \#_0(s) = \text{odd}$

$\#_1(s) = \text{odd}$

$\rightarrow S_3 \downarrow$
can we recognize these languages with DFAs?

- ε
- \emptyset
- \sum^*
- $\{ x \in \{0,1\}^* : \text{len}(x) > 1 \}$
strings over \(\{0, 1, 2\}^* \)

\(M_1 \): Strings with an even number of 2’s

\(M_2 \): Strings where the sum of digits mod 3 is 0
both: even number of 2’s and sum mod 3 = 0
DFA that accepts strings of a’s, b’s, c’s with no more than 3 a’s
FSM that accepts binary strings with a 1 three positions from the end
"Remember the last three bits"
FSMs with output

"Tug-of-war"

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_1</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_2</td>
<td>s_4</td>
</tr>
<tr>
<td>s_4</td>
<td>s_3</td>
<td>s_5</td>
</tr>
<tr>
<td>s_5</td>
<td>s_4</td>
<td>s_5</td>
</tr>
</tbody>
</table>

Diagram: A state diagram where states transition based on inputs L and R, with outputs indicated by "Beep".
We’re only making $5.50/hour writing regular expressions.

Let’s design a vending machine.

Vending spec:
Enter 15 cents in dimes or nickels
Press S or B for a candy bar
Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)
Adding output to states: N – Nickel, S – Snickers, B – Butterfinger
Adding additional “unexpected” transitions