Fall 2015
Lecture 12: Primes, GCD, applications

I have nothing to do, so I'm trying to calculate the prime factors of the time each minute before it changes. It was easy when I started at 1:00, but with each hour the number gets bigger. I wonder how long I can keep up.
Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):
Suppose $n \equiv 0 \pmod{2}$.
Then, $n = 2k$ for some integer k.
So, $n^2 = (2k)^2 = 4k^2$.
So, by definition of congruence, $n^2 \equiv 0 \pmod{4}$.

Case 2 (n is odd):
Suppose $n \equiv 1 \pmod{2}$.
Then, $n = 2k + 1$ for some integer k.
So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$.
So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$.
n-bit unsigned integer representation

- Represent integer x as sum of powers of 2:
 If $x = \sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$
 then representation is $b_{n-1} \cdots b_2 b_1 b_0$

 $99 = 64 + 32 + 2 + 1$
 $18 = 16 + 2$

- For $n = 8$:

 99: 0110 0011
 18: 0001 0010
n-bit signed integers
Suppose $-2^{n-1} < x < 2^{n-1}$
First bit as the sign, $n-1$ bits for the value

$99 = 64 + 32 + 2 + 1$
$18 = 16 + 2$

For $n = 8$:

$99: \quad 0110\ 0011$
$-18: \quad 1001\ 0010$

Any problems with this representation?
two's complement representation

n-bit signed integers, first bit will still be the sign bit

Suppose $0 \leq x < 2^{n-1}$,
\[x \text{ is represented by the binary representation of } x \]
Suppose $0 \leq x \leq 2^{n-1}$,
\[-x \text{ is represented by the binary representation of } 2^n - x \]

Key property: Two’s complement representation of any number y
 is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

For $n = 8$:
\[99 = 64 + 32 + 2 + 1 \]
\[18 = 16 + 2 \]

\[-18 \equiv 2^n - x \mod 2^n \]

\[256 - 18 = 238 \]
\[= 128 + 64 + 32 + 8 + 4 + 2 \]

\[\overline{11101110} \]
\[\overline{01010001} = 81 \]
sign-magnitude vs. two’s complement

<table>
<thead>
<tr>
<th></th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td>Sign-Magnitude</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td>Two’s complement</td>
<td></td>
</tr>
</tbody>
</table>
• For $0 < x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

• To compute this: Flip the bits of x then add 1:
 – All 1’s string is $2^n - 1$, so
 Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$
Theorem: A positive integer n is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.

\[
372 \quad 3 + 7 + 2 = 12
\]

\[
372 = 3 \cdot 124
\]

\[
n = d_k \cdot 10^k + d_{k-1} \cdot 10^{k-1} + \cdots + d_0 \cdot 1
\]

\[
3 \mid n \iff 3 \mid d_k + d_{k-1} + \cdots + d_0
\]

\[
10 \equiv 1 \mod 3
\]

\[
10^2 \equiv 1^2 \mod 3
\]

\[
10^k \equiv 1^k \mod 3
\]

\[
d_k \cdot 10 \equiv d_k \cdot 1
\]

\[
n \mod 3 = d_k - d_{k-1} \mod 3.
\]
basic applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher
Scenario:

Map a small number of data values from a large domain \(\{0, 1, \ldots, M - 1\} \) into a small set of locations \(\{0, 1, \ldots, n - 1\} \) so one can quickly check if some value is present.
Scenario:
Map a small number of data values from a large domain \(\{0, 1, \ldots, M - 1\} \) into a small set of locations \(\{0, 1, \ldots, n - 1\} \) so one can quickly check if some value is present.

- \(\text{hash}(x) = x \mod p \) for \(p \) a prime close to \(n \)
 - or \(\text{hash}(x) = (ax + b) \mod p \)

- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur.
pseudo-random number generation

Linear Congruential method:

\[x_{n+1} = (a \cdot x_n + c) \mod m \]

Choose random \(x_0, a, c, m \) and produce a long sequence of \(x_n \)'s

Adv: Fast

Dis: No too random.

[good for some applications, really bad for many others]
simple ciphers

- **Caesar cipher**, $A = 1$, $B = 2$, …
 - HELLO WORLD
- **Shift cipher**
 - $f(p) = (p + k) \mod 26$
 - $f^{-1}(p) = (p - k) \mod 26$
- **More general**
 - $f(p) = (ap + b) \mod 26$
modular exponentiation mod 7

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>a^1</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
modular exponentiation mod 7

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>a^1</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
modular exponentiation mod 7

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>a^1</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
• Compute 78365^{81453}

• Compute $78365^{81453} \mod 104729$

• Output is small
 – need to keep intermediate results small

$$((a \cdot a \mod m) \cdot a \mod m) \cdot a \mod m$$

81453 times.
Since \(a \mod m \equiv a \pmod{m} \) for any \(a \),
we have \(a^2 \mod m = (a \mod m)^2 \mod m \)
and \(a^4 \mod m = (a^2 \mod m)^2 \mod m \)
and \(a^8 \mod m = (a^4 \mod m)^2 \mod m \)
and \(a^{16} \mod m = (a^8 \mod m)^2 \mod m \)
and \(a^{32} \mod m = (a^{16} \mod m)^2 \mod m \)

Can compute \(a^k \mod m \) for \(k = 2^i \) in only \(i \) steps.
public static long FastModExp(long base, long exponent, long modulus) {
 long result = 1;
 base = base % modulus;

 while (exponent > 0) {
 if ((exponent % 2) == 1) {
 result = (result * base) % modulus;
 exponent -= 1;
 }
 /* Note that exponent is definitely divisible by 2 here. */
 exponent /= 2;
 base = (base * base) % modulus;
 /* The last iteration of the loop will always be exponent = 1 */
 /* so, result will always be correct. */
 }
 return result;
}

\[b^e \mod m = \left(b^2 \right)^{e/2} \mod m, \text{ when } e \text{ is even} \]
\[b^e \mod m = (b \ast (b^{e-1} \mod m) \mod m)) \mod m \]
78365^{81453} \mod M
= ((78365 \mod M) \times (78365^{81452} \mod M)) \mod M
= (78365 \times ((78365^2 \mod M)^{81452/2} \mod M)) \mod M
= (78365 \times ((78852^{40726} \mod M)) \mod M
= (78365 \times ((78852^2 \mod M)^{20363} \mod M)) \mod M
= (78365 \times (86632^{20363} \mod M)) \mod M
= (78365 \times ((86632 \mod M) \times (86632^{20362} \mod M)) \mod M
= ...
= 45235
Another way:

\[81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0} \]

\[a^{81453} = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}} \]

\[a^{81453} \mod m = \]
\[(\ldots(((a^{2^{16}} \mod m \cdot a^{2^{13}} \mod m) \mod m \cdot a^{2^{12}} \mod m) \mod m \cdot a^{2^{11}} \mod m) \mod m \cdot a^{2^{10}} \mod m) \mod m \cdot a^{2^{9}} \mod m) \mod m \cdot a^{2^{5}} \mod m) \mod m \cdot a^{2^{3}} \mod m) \mod m \cdot a^{2^{2}} \mod m) \mod m \cdot a^{2^{0}} \mod m) \mod m \]

The fast exponentiation algorithm computes \(a^n \mod m \) using \(O(\log n) \) multiplications \(\mod m \)
An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called *composite*.
Every positive integer greater than 1 has a unique prime factorization

48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3
591 = 3 \cdot 197
45,523 = 45,523
321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137
1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
If n is composite, it has a factor of size at most \sqrt{n}.
There are an infinite number of primes.

Proof by contradiction:
Suppose that there are only a finite number of primes:
\[p_1, p_2, \ldots, p_n \]
famous algorithmic problems

• Primality Testing
 – Given an integer n, determine if n is prime

• Factoring
 – Given an integer n, determine the prime factorization of n
Factor the following 232 digit number [RSA768]:

1230186684530117755130494958384962720772
8535695953347921973224521517264005072636
5751874520219978646938995647494277406384
5925192557326303453731548268507917026122
1429134616704292143116022212404792747377
94080665351419597459856902143413
GCD(a, b):

Largest integer \(d \) such that \(d \mid a \) and \(d \mid b \)

- \(\text{GCD}(100, 125) = \)
- \(\text{GCD}(17, 49) = \)
- \(\text{GCD}(11, 66) = \)
- \(\text{GCD}(13, 0) = \)
- \(\text{GCD}(180, 252) = \)
gcd and factoring

\[a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200 \]
\[b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750 \]

\[\text{GCD}(a, b) = 2^{\text{min}(3,1)} \cdot 3^{\text{min}(1,2)} \cdot 5^{\text{min}(2,3)} \cdot 7^{\text{min}(1,1)} \cdot 11^{\text{min}(1,0)} \cdot 13^{\text{min}(0,1)} \]

Factoring is expensive!
Can we compute \text{GCD}(a,b) without factoring?
If a and b are positive integers, then
\[\text{gcd}(a, b) = \text{gcd}(b, a \mod b) \]

Proof:
By definition $a = (a \div b) \cdot b + (a \mod b)$
If $d | a$ and $d | b$ then $d | (a \mod b)$.
If $d | b$ and $d | (a \mod b)$ then $d | a$.
Repeatedly use the GCD fact to reduce numbers until you get \(\text{GCD}(x, 0) = x \).

\[\text{GCD}(660, 126) \]
euclid’s algorithm

GCD(x, y) = GCD(y, x mod y)

```c
int GCD(int a, int b){ /* a >= b, b > 0 */
    int tmp;
    while (b > 0) {
        tmp = a % b;
        a = b;
        b = tmp;
    }
    return a;
}
```

Example: GCD(660, 126)