Power set of a set \(A \) = set of all subsets of \(A \)

\[
\mathcal{P}(A) = \{ B : B \subseteq A \}
\]

e.g. Days = \(\{M, W, F\} \)

\[
\mathcal{P}(\text{Days}) = \{ \emptyset, \{M\}, \{W\}, \{F\}, \{M, W\}, \{W, F\}, \{M, F\}, \{M, W, F\} \}
\]

e.g. \(\mathcal{P}(\emptyset) = \{ \emptyset \} \neq \emptyset \)

\(\emptyset \subseteq \emptyset \)
\[\{ \mathcal{P}(A) \} \subseteq \mathcal{P}(\mathcal{P}(A)) \]

\[\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(A)) \]

false

\[|A| = k \]

If \(|A| \leq n\), what is \(|\mathcal{P}(A)|\)?

\[|\mathcal{P}(A)| = 2^k \]

size of \(|A \times A \times A \times A|\)?

\[|\mathcal{P}(\mathcal{P}(A))| = 2^{(2^k)} \]

\[|\mathcal{P}(\mathcal{P}(A))| = 2^{(2^n)} \]

\[A = \{1\} \]

\[\mathcal{P}(A) = \{\phi, \{1\}\} \]

\[\mathcal{P}(\mathcal{P}(A)) = \{\phi, \{\phi\}, \{\{1\}\}, \{\phi, \{1\}\}\} \]

\[B \subseteq B \]

Since \(B \subseteq B \), \(B \in \mathcal{P}(B) \)

\[B = \mathcal{P}(A) \]

\[|A \times A| = n^2 \]
Fall 2015
Lecture 10: Functions, Modular arithmetic
So far:
- Propositional logic
- Logic to build circuits
- Predicates and quantifiers
- Proof systems and logical inference
- Basic set theory
Question: If the domain of discourse is empty and P is a predicate, what is the truth value of:

$$\exists x \ P(x)$$

$$\forall x \ P(x)$$
A function from A to B:

- Every element of A is assigned to exactly one element of B.
- We write $f : A \rightarrow B$.
- “Image of X under f” = "$f(X)$”
 \[= \{ x : \exists y \ (y \in X \land x = f(y)) \}\]

- **Domain of f is** A
- **Codomain of f is** B
- **Image of f** = Image of domain under f
 \[= \text{all the elements pointed to by something in the domain.}\]
A function $f : A \to B$ is one-to-one (or, injective) if every output corresponds to at most one input, i.e. $f(x) = f(x') \Rightarrow x = x'$ for all $x, x' \in A$.

A function $f : A \to B$ is onto (or, surjective) if every output gets hit, i.e. for every $y \in B$, there exists $x \in A$ such that $f(x) = y$.
is this function one-to-one? is it onto?

It is one-to-one, because nothing in B is pointed to by multiple elements of A.

It is not onto, because 5 is not pointed to by anything.
One-to-one (?)

- $x \mapsto x^2$
 - $-2 \mapsto 4$ \(\times \)
 - $2 \mapsto 4$ \(\times \)

- $x \mapsto x^3 - x$
 - $1 \mapsto 0$ \(\times \)
 - $0 \mapsto 0$ \(\times \)

- $x \mapsto e^x$
 - \(\checkmark \)
 - \(\times \)

- $x \mapsto x^3$
 - \(\checkmark \)

Onto (?)

- $x \mapsto |x|^{1/3} \sin(x)$
 - \(\checkmark \)
Dear HBO, this is a slide about digital watermarking.

“number theory” (and applications to computing)

• How whole numbers work
 [fascinating, deep, weird area of mathematics that no one understands, but the basics are easy and really useful]

• Many significant applications
 – Cryptography [this is how SSL works]
 – Hashing
 – Security
 – Error-correcting codes [this is how your bluray player works]

• Important tool set
public class Test {
 final static int SEC_IN_YEAR = 364*24*60*60;
 public static void main(String args[]) {
 System.out.println(
 "I will be alive for at least "+
 SEC_IN_YEAR * 101 + " seconds."
);
 }
}
Arithmetic over a finite domain: Math with wrap around

$2 - 4 \equiv 10 \pmod{12}$

+8

+5
Integers a, b, with $a \neq 0$. We say that a divides b iff there is an integer k such that $b = k \cdot a$. The notation $a \mid b$ denotes “a divides b.”

$3 \mid 15 \quad 1 \nmid 15$

$15 \nmid 17$

$a \mid b$

$3 \mid 0$?

$0 = 0.3$

$b = k \cdot a$
Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r < d$, such that $a = d \times q + r$.

\[
q = a \div d \quad r = a \mod d
\]

\[
a = 15 \\
\div 4 = q \\
a = -13 \\
\div 4 = q
\]

\[
a = 3 \\
\mod 3 = r \\
a = -4 \\
\mod 3 = r
\]

Note: $r \geq 0$ even if $a < 0$. Not quite the same as $a \% d$.

arithmetic mod 7

\[a +_7 b = (a + b) \text{ mod } 7 \]
\[a \times_7 b = (a \times b) \text{ mod } 7 \]

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

-2 \quad -1
Let a and b be integers, and m be a positive integer. We say a is **congruent** to b **modulo** m if m divides $a - b$. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

\[a \equiv b \pmod{m} \iff m \mid a - b \]
A ≡ 0 (mod 2)
This statement is the same as saying “A is even”; so, any
A that is even (including negative even numbers) will work.

1 ≡ 0 (mod 4)
This statement is false. If we take it mod 1 instead, then the
statement is true.

A ≡ -1 (mod 17)
If A = 17x − 1 = 17(x-1) + 16 for an integer x, then it works.
Note that (m − 1) mod m
= ((m mod m) + (-1 mod m)) mod m
= (0 + -1) mod m
= -1 mod m
Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Proof: Suppose that $a \equiv b \pmod{m}$.

By definition: $a \equiv b \pmod{m}$ implies $m \mid (a - b)$

which by definition implies that $a - b = km$ for some integer k.

Therefore $a = b + km$.

Taking both sides modulo m we get

$$a \mod m = (b+km) \mod m = b \mod m$$
Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Proof: Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q, s.

$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$
$$= m(q - r) + (a \mod m - b \mod m)$$
$$= m(q - r) \text{ since } a \mod m = b \mod m$$

Therefore $m \mid (a-b)$ and so $a \equiv b \pmod{m}$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Adding the equations together gives us $(a + c) - (b + d) = m(k + j)$. Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.

Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Then, $a = km + b$ and $c = jm + d$.

Multiplying both together gives us

\[ac = (km + b)(jm + d) = k jm^2 + kmd + jmb + bd \]

Rearranging gives us $ac - bd = m(kjm + kd + jb)$.

Using the definition of mod gives us $ac \equiv bd \pmod{m}$.
Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$