Power set of a set $A = \text{set of all subsets of } A$

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

e.g. Days = \{M, W, F\}

$$\mathcal{P}(\text{Days}) = \{ \emptyset, \{M\}, \{W\}, \{F\}, \{M,W\}, \{W,F\}, \{M,F\}, \{M,W,F\} \}$$

e.g. $\mathcal{P}(\emptyset) = \{\emptyset\}$

$$|\emptyset| = 0$$

$$2^0 - 1 = 1$$

$$|\mathcal{P}(A)| = 2^{|A|}$$

$A = \{1, \ldots, 10\}$

$B \in \mathcal{P}(A)$
Fall 2015
Lecture 10: Functions, Modular arithmetic
[this special lecture was given by a 5-year-old]
a little recap

So far:
- Propositional logic
- Logic to build circuits
- Predicates and quantifiers
- Proof systems and logical inference
- Basic set theory
Question: If the domain of discourse is empty and P is a predicate, what is the truth value of:

$\exists x \ P(x)$ \quad F

$\forall x \ P(x)$ \quad T
A function from A to B:

- Every element of A is assigned to exactly one element of B.
- We write $f : A \to B$.
- “Image of X under f” = "$f(X)$"
 $$\left\{ x : \exists y (y \in X \land x = f(y)) \right\}$$
- Domain of f is A
- Codomain of f is B
- Image of f = Image of domain under f
 = all the elements pointed to by something in the domain.
Image(\{a\}) = \{2, 3\}
Image(\{a, e\}) = \{2, 3\}
Image(\{a, b\}) = \{1, 2, 3\} = \{2, 13\}
Image(A) = \{1, 2, 4, 3\}
A function $f: A \rightarrow B$ is **one-to-one** (or, **injective**) if every output corresponds to at most one input, i.e. $f(x) = f(x') \Rightarrow x = x'$ for all $x, x' \in A$.

A function $f : A \rightarrow B$ is **onto** (or, **surjective**) if every output gets hit, i.e. for every $y \in B$, there exists $x \in A$ such that $f(x) = y$.

\[f \text{ onto } \Rightarrow |A| \geq |B| \]
is this function one-to-one? is it onto?

It is one-to-one, because nothing in B is pointed to by multiple elements of A.

It is not onto, because 5 is not pointed to by anything.
One-to-one (?)

\[
x \mapsto x^2
\]

\[\mathbb{N} -2, 2\]

\[
x \mapsto x^3 - x
\]

\[\mathbb{N} 0, 1, -1\]

\[
x \mapsto e^x
\]

\[
x \mapsto x^3
\]

Onto (?)

Domain: Reals

\[\text{Co-domain: Real}\]
Dear HBO, this is a slide about digital watermarking.
“number theory” (and applications to computing)

- How whole numbers work
 [fascinating, deep, weird area of mathematics that no one understands, but the basics are easy and really useful]

- Many significant applications
 - Cryptography [this is how SSL works]
 - Hashing
 - Security
 - Error-correcting codes [this is how your bluray player works]

- Important tool set
public class Test {
 final static int SEC_IN_YEAR = 364*24*60*60;
 public static void main(String args[]) {
 System.out.println(
 "I will be alive for at least " +
 SEC_IN_YEAR * 101 + " seconds."
);
 }
}
Arithmetic over a finite domain: Math with wrap around
Integers a, b, with $a \neq 0$. We say that a divides b iff there is an integer k such that $b = k \cdot a$. The notation $a \mid b$ denotes “a divides b.”
Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with $0 \leq r < d$, such that $a = dq + r$.

$q = \text{a div } d, \quad r = \text{a mod } d$

Note: $r \geq 0$ even if $a < 0$. Not quite the same as $a \% d$.

$a = 10, \quad d = 3$
$q = 3, \quad r = 1$

$a = -11, \quad d = 3$
$q = -4, \quad r = +1$
$-11 = 3 \cdot -4 + 1$
Arithmetic Mod 7

- **Addition Mod 7**: $a +_7 b = (a + b) \mod 7$
- **Multiplication Mod 7**: $a \times_7 b = (a \times b) \mod 7$

Addition Table Mod 7

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Multiplication Table Mod 7

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Let a and b be integers, and m be a positive integer. We say a is **congruent** to b modulo m if m divides $a - b$. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

\[
\begin{align*}
10 &\equiv 2 \pmod{7} \quad \text{No} \\
10 &\equiv 3 \pmod{7} \\
10 &\equiv -4 \pmod{7} \\
12 &\equiv 20 \pmod{8}
\end{align*}
\]
modular arithmetic: examples

A ≡ 0 (mod 2)
This statement is the same as saying “A is even”; so, any A that is even (including negative even numbers) will work.

1 ≡ 0 (mod 4)
This statement is false. If we take it mod 1 instead, then the statement is true.

A ≡ -1 (mod 17)
If A = 17x - 1 = 17(x-1) + 16 for an integer x, then it works.

Note that (m - 1) mod m
= ((m mod m) + (-1 mod m)) mod m
= (0 + -1) mod m
= -1 mod m
Theorem: Let \(a\) and \(b\) be integers, and let \(m\) be a positive integer. Then \(a \equiv b \pmod{m}\) if and only if \(a \mod m = b \mod m\).
Theorem: Let \(a \) and \(b \) be integers, and let \(m \) be a positive integer. Then \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

Proof: Suppose that \(a \equiv b \pmod{m} \).
By definition: \(a \equiv b \pmod{m} \) implies \(m \mid (a - b) \)
which by definition implies that \(a - b = km \) for some integer \(k \).
Therefore \(a = b + km \).
Taking both sides modulo \(m \) we get
\[
 a \mod m = (b+km) \mod m = b \mod m
\]
Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.
Theorem: Let a and b be integers, and let m be a positive integer. Then \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

Proof: Suppose that \(a \mod m = b \mod m \).

By the division theorem, \(a = mq + (a \mod m) \) and \(b = ms + (b \mod m) \) for some integers \(q,s \).

\[
\begin{align*}
a - b &= (mq + (a \mod m)) - (ms + (b \mod m)) \\
&= m(q - r) + (a \mod m - b \mod m) \\
&= m(q - r) \quad \text{since} \quad a \mod m = b \mod m
\end{align*}
\]

Therefore \(m \mid (a-b) \) and so \(a \equiv b \pmod{m} \)
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Adding the equations together gives us $(a + c) - (b + d) = m(k + j)$. Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$.
Let \(m \) be a positive integer. If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then \(ac \equiv bd \pmod{m} \).

Suppose \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \).

Unrolling definitions gives us some \(k \) such that \(a - b = km \), and some \(j \) such that \(c - d = jm \).

Then, \(a = km + b \) and \(c = jm + d \).

Multiplying both together gives us

\[
ac = (km + b)(jm + d) = k jm^2 + kmd + jmb + bd
\]

Rearranging gives us \(ac - bd = m(kjm + kd + jb) \).

Using the definition of mod gives us \(ac \equiv bd \pmod{m} \).
Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$